从零开始学 langchain 之搭建最小的 RAG 系统

RAG 可以说是 23 年以来到现在,最为火热的大模型应用技术了,很多人都有了很多经典的研究。而对于新人来说,有些代码十分复杂,导致只看表象并不理解其原理。今天,就利用 langchain 和大家一起搭建一个最简单的 RAG 系统,一起来学习一下吧。

langchain 安装

目前,langchain 的版本已经更新到 0.1.X,建议使用最新的稳定版本,不然之前的代码会出现兼容性的问题。

Retrieval | ️ LangChain

RAG 原理解析

RAG 的原理已经有很多文章都提到了,这里我们再复习一下,下面是从论文中截取的图,欢迎查看这篇原文。

Retrieval-Augmented Generation for Large Language Models: A Survey

从图中,我们进行进一步的拆解,可以看到,主要分为下面几个步骤:

1、索引建立,将文本数据通过向量化的模型导入到向量数据库进行存储

2、检索,根据用户的输入去检索最相关的 n 个片段

3、生成,将上下文和用户问题拼接成提示词,输入给大模型,得到最后的答案。

索引建立

我们使用 chroma 作为向量数据库去存储用户数据,并调用 BGE 的向量去完成向量化的操作。原始的数据,为了方便展示,使用了 markdown 格式的数据,可以直接用 textloader 进行加载。

详细代码如下:

python
import os
from langchain.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.document_loaders import TextLoader
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from model_factory import yi_llm

BGE_MODEL_PATH = "BAAI/bge-large-zh"
root_dir = "./zsxq"

def extract_file_dirs(directory):
    file_paths = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith(".md"):
                fp = os.path.join(root, file)
                file_paths.append(fp)
    return file_paths

files = extract_file_dirs(root_dir)
print(files)
loaders = [TextLoader(f) for f in files]

docs = []
for l in loaders:
    docs.extend(l.load())

text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=20)
documents = text_splitter.split_documents(docs)
huggingface_bge_embedding = HuggingFaceBgeEmbeddings(model_name=BGE_MODEL_PATH)
vectorstore = Chroma.from_documents(documents, huggingface_bge_embedding, persist_directory="./vectorstore")

query="在知识星球里,怎么快速找到最有价值的内容?"
result = vectorstore.similarity_search(query, k=3)

for doc in result:
    print(doc.page_content)
    print("********")

检索

我们很容易的使用下面这个语句,将向量数据库转为检索器进行使用。然后可以调用检索器的get_relevant_documents 方法去检索得到相似的文本片段,然后就可以使用 langchain 的 LCEL 语言去调用了。

python
retriever = vectorstore.as_retriever()
docs = retriever.get_relevant_documents(query)

生成

我们首先定义一个简单的提示词,将检索得到的上下文片段和用户的问题进行拼接,然后输入给大模型进行回答。为了方便最后对比各种方法的效果,我们使用了 StrOutputParser 去提取最后输出的文本。

代码如下:

python
template = """Answer the question based only on the following context:

{context}

Question: {question},请用中文输出答案。
"""
prompt = ChatPromptTemplate.from_template(template)
model = yi_llm


def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | model
    | StrOutputParser()
)

response = chain.invoke(query)
print(response)
print(yi_llm.invoke(query))

结果对比

RAG 输出结果

LLM 输出结果

原文

分析,从输出的结果上看,RAG 的输出命中了原文的搜索功能,但是增加了关注订阅,推荐这些原文没有提到的内容,仍然会存在幻觉。

LLM 输出的结果,看起来是对的,但实际上和原文并不相符,应该是用的自己内部的知识,也存在幻觉问题。

我们只是搭建了一个简单的示例,因此,RAG 的结果,是还有待改进的,不能立马满足我们的要求。

python
import os
from langchain.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.document_loaders import TextLoader
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from model_factory import yi_llm

BGE_MODEL_PATH = "BAAI/bge-large-zh"
root_dir = "./zsxq"

def extract_file_dirs(directory):
    file_paths = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith(".md"):
                fp = os.path.join(root, file)
                file_paths.append(fp)
    return file_paths

files = extract_file_dirs(root_dir)
print(files)
loaders = [TextLoader(f) for f in files]

docs = []
for l in loaders:
    docs.extend(l.load())

text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=20)
documents = text_splitter.split_documents(docs)
huggingface_bge_embedding = HuggingFaceBgeEmbeddings(model_name=BGE_MODEL_PATH)
vectorstore = Chroma.from_documents(documents, huggingface_bge_embedding, persist_directory="./vectorstore")

query="在知识星球里,怎么快速找到最有价值的内容?"
result = vectorstore.similarity_search(query, k=3)

for doc in result:
    print(doc.page_content)
    print("********")

retriever = vectorstore.as_retriever()

template = """Answer the question based only on the following context:

{context}

Question: {question},请用中文输出答案。
"""
prompt = ChatPromptTemplate.from_template(template)
model = yi_llm


def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | model
    | StrOutputParser()
)

response = chain.invoke(query)
print("RAG 输出结果:",response)

print("LLM 输出结果:",yi_llm.invoke(query).content)

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/563647.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JAVA学习笔记27(异常)

1.异常 ​ *异常(Exception) ​ *快捷键 ctrl alt t 选中try - catch ​ *如果进行了异常处理,那么即使出现了异常,程序可以继续执行 1.1 基本概念 ​ *在Java语言中,将程序执行中发生的不正常情况称为"异常"(开发过程中的语…

Xinlinx原语在哪查看如何使用/原语示例

1.打开Vivado 2.点击Tools,选择Language Templates 3.选择Language类型、Device Primitive Instantiation(原语)、Kintex-7(芯片系列),之后可以选择自己需要使用的类型,这里以分布式RAM为例&am…

大一考核题解

在本篇中,将尽力使用多种解法,来达到一题多练的效果。 1: 1.原题链接: 238. 除自身以外数组的乘积 - 力扣(LeetCode) 这道题首先一眼肯定想到拿整体的积除以当前元素,将结果作为ans,…

Mysql的【存储引擎】之【InnoDB】与【MyISAM】的区别

目录 1.存储引擎在 MyISAM 和 InnoDB 有什么区别 2.Mysql 5.7 默认的存储引擎是什么 3.一个简单例子(如果非要使用【MyISAM】存储引擎 ) 4.2009年写的留言板程序的数据(存储引擎是:【MyISAM】) 5.mysql 8.0 可以使…

Java学习笔记26(枚举和注解)

1.枚举和注解 1.1 枚举 ​ 1.枚举(enumeration) ​ 2.枚举是一组常量的集合 ​ 3.枚举属于一种特殊的类,里面只包含一组有限的特定的对象 1.枚举应用案例 ​ 1.不需要提供setXxx方法,因为枚举对象值通常为只读 ​ 2.对枚举对象/属性使用final st…

web前端(简洁版)

0. 开发环境 && 安装插件 这里我使用的是vscode开发环境 Auto Rename Tag是语法自动补齐view-in-browser是快速在浏览器中打开live server实时网页刷新 1. HTML 文件基本结构 <html><head><title>第一个页面</title></head><body&g…

vuedevtools图标不亮不能使用,显示vue.js not detected

&#xff08;1&#xff09;不亮解决&#xff1a; 根本原因就是下载的vue开发者工具不对&#xff0c;没有编译。 直接来一个最彻底的解决办法&#xff1a; 下载我已经编译好的shellchrome 链接: https://pan.baidu.com/s/1zKEgGxT5uAvofpD-T1Oa_w?pwd72m5 提取码: 72m5 解…

王者荣耀防御塔如何开发!新手小白做游戏开发采坑经过。phaser前端游戏框架

好嘞&#xff0c;游戏开发框架是js 开发的网页小游戏&#xff01; phaser这个框架。好我们先上图&#xff01; 目前大概是这么一个样子。 然后防御塔功能呢。简单的说就是当人物进去的时候打他。人物扣血。 我们的小人物是这样的代码 遇到的问题如下&#xff1b; 小白刚开始…

【Spring Security系列】Spring Security整合JWT:构建安全的Web应用

前言 在企业级开发或者我们自己的课程设计中&#xff0c;确保用户数据的安全性和访问控制非常重要。而Spring Security和JWT是都两个强大的工具&#xff0c;它俩结合可以帮助我们实现这一目标。 Spring Security提供了全面的安全功能&#xff0c;而JWT则是一种用于身份验证的…

最新win11配置cuda以及cudnn补丁教程

1、首先使用指令 nvidia-smi 查看电脑支持的**最高cuda**版本&#xff0c;例如&#xff1a;本机 12.2 2、进入CUDA下载cuda安装包 https://developer.nvidia.com/cuda-toolkit-archive 2、点击上方绿色的链接&#xff0c;按照图中序号选择的即可&#xff0c;最后点击下载。 …

学习springcloud中Nacos笔记

一、springcloud版本对应 版本信息可以参考&#xff1a;版本说明 alibaba/spring-cloud-alibaba Wiki GitHub 这里说2022.x 分支对应springboot的版本信息&#xff1a; Spring Cloud Alibaba VersionSpring Cloud VersionSpring Boot Version 2022.0.0.0* Spring Cloud 202…

Unity3D 羊了个羊等游戏工程源码/3D资源 大合集

Unity3D休闲益智游戏工程源码大合集 一、关卡类游戏工程源码二、跑酷类游戏工程源码三、消除合成类游戏工程源码四、棋牌类游戏工程源码五、RPG(角色扮演)类游戏工程源码六、FPS&#xff08;射击&#xff09;类游戏工程源码十、Unity3D工艺仿真六、Unity游戏资源1、Unity3D 吃鸡…

软件杯 深度学习实现语义分割算法系统 - 机器视觉

文章目录 1 前言2 概念介绍2.1 什么是图像语义分割 3 条件随机场的深度学习模型3\. 1 多尺度特征融合 4 语义分割开发过程4.1 建立4.2 下载CamVid数据集4.3 加载CamVid图像4.4 加载CamVid像素标签图像 5 PyTorch 实现语义分割5.1 数据集准备5.2 训练基准模型5.3 损失函数5.4 归…

【C++】C++11 包装器

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 function包装器 fu…

# 从浅入深 学习 SpringCloud 微服务架构(二)模拟微服务环境(1)

从浅入深 学习 SpringCloud 微服务架构&#xff08;二&#xff09;模拟微服务环境&#xff08;1&#xff09; 段子手168 1、打开 idea 创建父工程 创建 artifactId 名为 spring_cloud_demo 的 maven 工程。 --> idea --> File --> New --> Project --> Ma…

【Hello算法】 > 第 3 关 >栈与队列

数据结构 之 数组与链表 1 栈 / 栈的常见操作、实现、应用2 队列 /队列的常见操作、实现、应用3 双向队列4 Tips ———————————————————————————————————————————————————————————- ————————————————…

MySQL基础篇总结

参考&#xff1a;黑马程序员MySQL基础视频链接 数据库基本操作 启动与停止 1.第一种方式&#xff1a; 1>以管理员身份运行cmd 2>在命令行窗口中输入: 启动:net start mysql80停止:net stop mysql80 2.第二种方式: 1>WinR快捷方式打开如下&#xff1a; 输入&#…

CompletableFuture编排异步线程

CompletableFuture 是 Java 8 引入的一种新的 Future&#xff0c;设计目的是为了编写非阻塞的异步代码。 传统异步编程方式 传统异步编程方式获得异步任务值&#xff0c;首先我们得通过future task &#xff0c;然后创建一个实现callable内部类&#xff0c;或者通过lambda的表…

Stable Diffusion教程:提示词(模型、插件、安装包可分享)

什么是提示词 文章提到的模型、插件、安装包都可分享&#xff0c;需要的小伙伴文末领取&#xff01; 你可能没写过提示词&#xff0c;但是一定听说过“提示词”这几个字&#xff0c;也大概能知道它的重要性。 没听说过也没关系&#xff0c;下面我就带你认识认识。 提示词就…

ARM_day6:实现字符串数据收发函数的封装

程序代码&#xff1a; uart4.h&#xff1a; #ifndef __UART4_H__ #define __UART4_H__ #include"stm32mp1xx_gpio.h" #include"stm32mp1xx_rcc.h" #include"stm32mp1xx_uart.h" void uart4_config(); void putchar(char dat); char getchar();…