【信号处理】基于CNN的心电(ECG)信号分类典型方法实现(tensorflow)

关于

本实验使用1维卷积神经网络实现心电信号的5分类。由于数据类别不均衡,这里使用典型的上采样方法,实现数据类别的均衡化处理。

工具

 

方法实现

数据加载

''' Read the CSV file datasets: NORMAL_LABEL=0 , ABNORMAL_LABEL=1,2,3,4,5 '''
ptbdb_abnormal=pd.read_csv(os.path.join('/input/heartbeat', 'ptbdb_abnormal.csv'),header=None)
ptbdb_normal=pd.read_csv(os.path.join('/input/heartbeat', 'ptbdb_normal.csv'),header=None)
ptbdb_train=pd.concat([ptbdb_abnormal,ptbdb_normal],ignore_index=True)
mitbih_train=pd.read_csv(os.path.join('/input/heartbeat', 'mitbih_train.csv'),header=None)
mitbih_test=pd.read_csv(os.path.join('/input/heartbeat', 'mitbih_test.csv'),header=None)


'''VISUALIZE THE [MITBIH_TRAIN] DATASET: You will observe that majority of the obsvns are of Label=0'''
fig,ax=plt.subplots(figsize=(8,8))
mitbih_train[187].value_counts().plot(ax=ax,kind='bar')
plt.show()


full_train=pd.concat([mitbih_train,ptbdb_train],ignore_index=True)
full_train.shape      #102106*188

'''BREAK DOWN THE FULL TRAIN DATASET INTO X & Y'''
full_train_y=full_train[187]
full_train_x=full_train.drop(columns=[187])

'''BREAK DOWN THE TEST DATASET INTO X & Y'''
mitbih_test_y=mitbih_test[187]
mitbih_test_x=mitbih_test.drop(columns=[187])

 信号可视化

plots= [['Normal Beat','Supraventricular Ectopic Beat'], ['Ventricular Ectopic Beat', 'Fusion Ectopic Beat'], ['Unknown']]
colors= [['green', 'orange'], ['red', 'blue'], ['grey']]
fig, axs = plt.subplots(3, 2, constrained_layout=True, figsize=(14,14))
fig.delaxes(axs[2,1])

for i in range(0,5,2):
    j=i//2
    axs[j][0].plot(mitbih_train[mitbih_train[187]==i%5].sample(1, random_state=100).iloc[0,:186], colors[j][0])
    axs[j][0].set_title('{}. {}'.format(i%5,plots[j][0]))
    
    if i%5!=4:
        axs[j][1].plot(mitbih_train[mitbih_train[187]==(i%5)+1].sample(1, random_state=100).iloc[0,:186], colors[j][1])
        axs[j][1].set_title('{}. {}'.format(i%5+1,plots[j][1]))

 使用上采样方法处理数据不均衡

'''RESAMPLING THE CLASSES TO HAVE EQUAL DATA DISTRIBUTION LED TO WORSEN PERFORMANCE (POSSIBLE UNDERFITTING REASON)'''
df0=mitbih_train[mitbih_train[187]==0].sample(n=20000,random_state=10)
df1=mitbih_train[mitbih_train[187]==1]
df2=mitbih_train[mitbih_train[187]==2]
df3=mitbih_train[mitbih_train[187]==3]
df4=mitbih_train[mitbih_train[187]==4]

df1_upsampled=resample(df1,replace=True,n_samples=20000,random_state=100)
df2_upsampled=resample(df2,replace=True,n_samples=20000,random_state=101)
df3_upsampled=resample(df3,replace=True,n_samples=20000,random_state=102)
df4_upsampled=resample(df4,replace=True,n_samples=20000,random_state=103)
train_df=pd.concat([df1_upsampled,df2_upsampled,df3_upsampled,df4_upsampled,df0])

print(train_df[187].value_counts())
plt.figure(figsize=(10,10))
plt.pie(train_df[187].value_counts(), labels=['N','Q','V','S','F'],
        colors=['orange','yellow','lightblue','lightgreen','grey'], autopct='%.2f%%')
plt.gcf().gca().add_artist(plt.Circle( (0,0), 0.7, color='white' ))
plt.title('Balanced classes after upsampling')
plt.show()

模型搭建

model=tf.keras.Sequential()
model.add(tf.keras.layers.Convolution1D(filters=50,kernel_size=20,activation='relu',kernel_initializer='glorot_uniform',input_shape=(187,1)))
#a1_0=> 187-20+1= 168,50
model.add(tf.keras.layers.MaxPool1D(pool_size=10,data_format='channels_first'))
#a1_1=> 50//10= 168,5
model.add(tf.keras.layers.Convolution1D(filters=20,kernel_size=15,activation='relu',kernel_initializer='glorot_uniform'))
#a2_0=> 168-15+1= 154,20
model.add(tf.keras.layers.MaxPool1D(pool_size=15,data_format='channels_first'))
#a2_1=> 20//15= 154,1
model.add(tf.keras.layers.Convolution1D(filters=10,kernel_size=10,activation='relu',kernel_initializer='glorot_uniform'))
#a3_0=> 154-10+1=145,10
model.add(tf.keras.layers.MaxPool1D(pool_size=10,data_format='channels_first'))
#a3_1=> 10//10=145,1
model.add(tf.keras.layers.Flatten())
#a4=> 145
model.add(tf.keras.layers.Dense(units=512,activation='relu',kernel_initializer='glorot_uniform'))
#a4=> 512
model.add(tf.keras.layers.Dense(units=128,activation='relu',kernel_initializer='glorot_uniform'))
#a5=> 128
model.add(tf.keras.layers.Dense(units=5,activation='softmax'))

model.compile(optimizer='Adam',loss='sparse_categorical_crossentropy',metrics=['acc'])
model.summary()

 模型训练

mitbih_test_x2=np.asarray(mitbih_test_x)
mitbih_test_x2=mitbih_test_x2.reshape(-1,187,1)


''' DATASET AFTER UPSAMPLING, WITH EVEN DISTRIBUTION ACROSS CLASSES '''
train_df_X=np.asarray(train_df.iloc[:,:187]).reshape(-1,187,1)
train_df_Y=train_df.iloc[:,187]
print(train_df_X.shape)


hist=model.fit(train_df_X,train_df_Y,batch_size=64,epochs=20)

 

代码获取

相关项目和问题,后台私信交流沟通。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/562897.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用JavaScript收集和发送用户设备信息,后端使用php将数据保存在本地json,便于后期分析数据

js代码部分 <script> // 之前提供的JavaScript代码 fetch(https://api.ipify.org?formatjson).then(response > response.json()).then(data > {const deviceInfo {userAgent: navigator.userAgent,platform: navigator.platform,language: navigator.language,…

[Spring Cloud] (4)搭建Vue2与网关、微服务通信并配置跨域

文章目录 前言gatway网关跨域配置取消微服务跨域配置 创建vue2项目准备一个原始vue2项目安装vue-router创建路由vue.config.js配置修改App.vue修改 添加接口访问安装axios创建request.js创建index.js创建InfoApi.js main.jssecurityUtils.js 前端登录界面登录消息提示框 最终效…

微信小程序vue.js+uniapp服装商城销售管理系统nodejs-java

本技术是java平台的开源应用框架&#xff0c;其目的是简化Sping的初始搭建和开发过程。默认配置了很多框架的使用方式&#xff0c;自动加载Jar包&#xff0c;为了让用户尽可能快的跑起来spring应用程序。 SpinrgBoot的主要优点有&#xff1a; 1、为所有spring开发提供了一个更快…

贝叶斯分类 python

贝叶斯分类 python 贝叶斯分类器是一种基于贝叶斯定理的分类方法&#xff0c;常用于文本分类、垃圾邮件过滤等领域。 在Python中&#xff0c;我们可以使用scikit-learn库来实现贝叶斯分类器。 下面是一个使用Gaussian Naive Bayes(高斯朴素贝叶斯)分类器的简单示例&#xff1…

大数据Hive中的UDF:自定义数据处理的利器(上)

文章目录 1. 前言2. UDF与宏及静态表的对比3. 深入理解UDF4. 实现自定义UDF 1. 前言 在大数据技术栈中&#xff0c;Apache Hive 扮演着数据仓库的关键角色&#xff0c;它提供了丰富的数据操作功能&#xff0c;并通过类似于 SQL 的 HiveQL 语言简化了对 Hadoop 数据的处理。然而…

汇编语言(详解)

汇编语言安装指南 第一步&#xff1a;在github上下载汇编语言的安装包 网址&#xff1a;GitHub - HaiPenglai/bilibili_assembly: B站-汇编语言-pdf、代码、环境等资料B站-汇编语言-pdf、代码、环境等资料. Contribute to HaiPenglai/bilibili_assembly development by creat…

STM32 | USART实战案例

STM32 | 通用同步/异步串行接收/发送器USART带蓝牙(第六天)随着扩展的内容越来越多,很多小伙伴已经忘记了之前的学习内容,然后后面这些都很难理解。STM32合集已在专栏创建,方面大家学习。1、通过电脑串口助手发送数据,控制开发板LED灯 从题目中可以挖掘出,本次使用led、延…

【JVM常见问题总结】

文章目录 jvm介绍jvm内存模型jvm内存分配参数jvm堆中存储对象&#xff1a;对象在堆中创建分配内存过程 jvm 堆垃圾收集器垃圾回收算法标记阶段引用计数算法可达性分析算法 清除阶段标记清除算法复制算法标记压缩算法 实际jvm参数实战jvm调优jvm常用命令常用工具 jvm介绍 Java虚…

C++设计模式:适配器模式(十四)

1、定义与动机 定义&#xff1a;将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼容而不能一起工作的哪些类可以一起工作。 动机&#xff1a; 在软件系统中&#xff0c;由于应用环境的变化&#xff0c;常常需要将“一些现存的对象”放在新的环境…

【Hadoop】- YARN概述[6]

目录 一、YARN & Reduce 二、分布式资源调度 - YARN 1、资源调度 2、YARN的资源调度 总结 一、YARN & Reduce MapReduce是基于YARN运行的&#xff0c;即没有YARN “无法” 运行MapReduce程序。 二、分布式资源调度 - YARN YARN&#xff08;Yet Another Resou…

注意力机制中多层的作用

1.多层的作用 在注意力机制中&#xff0c;多层的作用通常指的是将注意力机制堆叠在多个层上&#xff0c;这在深度学习模型中被称为“深度”或“多层”注意力网络。这种多层结构的作用和实现过程如下&#xff1a; 1. **逐层抽象**&#xff1a;每一层都可以捕捉到输入数据的不同…

Oracle之SQL plus的一些经验心得

每次登入SQL plus后,不知道时哪个用户登入,非常不方便,只能使用show user查看。 以下时可以通过一些设置实现上述的效果,知道时哪个用户登入,和实现输出效果等 1)SQL plus使用细则 SQL plus登录时,我们可以设置一些通用的设置,在每次登入SQL plus的时候生效。 [root@c…

Eclipse+Java+Swing实现学生信息管理系统-TXT存储信息

一、系统介绍 1.开发环境 操作系统&#xff1a;Win10 开发工具 &#xff1a;Eclipse2021 JDK版本&#xff1a;jdk1.8 存储方式&#xff1a;Txt文件存储 2.技术选型 JavaSwingTxt 3.功能模块 4.工程结构 5.系统功能 1.系统登录 管理员可以登录系统。 2.教师-查看学生…

rmallox勒索病毒威胁网络安全:如何避免数据被锁定

尊敬的读者&#xff1a; 随着信息技术的飞速发展&#xff0c;网络空间的安全问题日益凸显。近年来&#xff0c;一种名为.rmallox的勒索病毒频繁出没&#xff0c;给广大计算机用户带来了严重的困扰。本文将对该病毒进行深入剖析&#xff0c;并探讨相应的应对策略。在面对被勒索…

VulnHub靶机 DC-7 打靶 渗透详细流程

VulnHub靶机 DC-7 实战打靶 详细渗透测试流程 目录 VulnHub靶机 DC-7 实战打靶 详细渗透测试流程一、将靶机配置文件导入虚拟机当中二、渗透测试流程主机发现端口扫描目录爆破web渗透白盒测试ssh远程连接 提权修改后台密码GETSHELL反弹shell 一、将靶机配置文件导入虚拟机当中 …

深度神经网络(DNN)

通过5个条件判定一件事情是否会发生&#xff0c;5个条件对这件事情是否发生的影响力不同&#xff0c;计算每个条件对这件事情发生的影响力多大&#xff0c;写一个深度神经网络&#xff08;DNN&#xff09;模型程序,最后打印5个条件分别的影响力。 示例 在深度神经网络&#xf…

【免费源码下载】完美运营版商城 虚拟商品全功能商城 全能商城小程序 智慧商城系统 全品类百货商城php+uniapp

简介 完美运营版商城/拼团/团购/秒杀/积分/砍价/实物商品/虚拟商品等全功能商城 干干净净 没有一丝多余收据 还没过手其他站 还没乱七八走的广告和后门 后台可以自由拖曳修改前端UI页面 还支持虚拟商品自动发货等功能 挺不错的一套源码 前端UNIAPP 后端PHP 一键部署版本&am…

51、图论-岛屿数量

思路&#xff1a; 该问题要求在一个由 1&#xff08;表示陆地&#xff09;和 0&#xff08;表示水&#xff09;组成的二维网格中&#xff0c;计算岛屿的数量。岛屿被水包围&#xff0c;并且通过水平或垂直连接相邻的陆地可以形成。这个问题的核心是识别并计数网格中相连的陆地…

ssm068海鲜自助餐厅系统+vue

海鲜自助餐厅系统的设计与实现 摘 要 网络技术和计算机技术发展至今&#xff0c;已经拥有了深厚的理论基础&#xff0c;并在现实中进行了充分运用&#xff0c;尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代&#xff0c;所以对于信息的宣传和管…

车载电子电器架构 —— 功能安全开发(首篇)

车载电子电器架构 —— 功能安全开发 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己…