在实际应用中,我们经常会使用到功率MOS,这时通常不会将它当成一个开关使用,而是当成一个放大器来使用,那这就需要让其工作在放大状态。
参考下图中的mos管的特性曲线,右图中的输出特性曲线中有一根红色的分界线,这个线就是区分mos管工作状态的分界线,在红线的左边,mos管工作在可变电阻区,也就是线性区;在红线的右边mos管工作在恒流区,也就是饱和区。当然,还有一个截止区。
本文分析主要运用模电课本中的理论计算验证。
1.三电阻电路
如上图所示,是在multisim中绘制的放大电路,便于仿真验证。使用的MOS管的型号为2N7000。计算中需要使用的关键参数
U
G
S
T
H
=
2
V
U_{GSTH}=2V
UGSTH=2V
K
=
0.0502
A
/
V
2
K=0.0502A/V^{2}
K=0.0502A/V2
第一步判断此MOS是否工作在放大状态?那么就需要先分析其静态。分析静态的时候,电容开路,那么就会简化电路如下:
MOS管栅极电压用电阻分压可以求得
U
G
Q
=
12
V
∗
R
3
/
(
R
2
+
R
3
)
=
2.26
V
U_{GQ}=12V*R3/(R2+R3)=2.26V
UGQ=12V∗R3/(R2+R3)=2.26V (1)
这里的源极也就是S极直接接地了,所以可以得到
U
G
S
Q
=
U
G
Q
=
2.26
V
U_{GSQ}=U_{GQ}=2.26V
UGSQ=UGQ=2.26V (2)
然后需要借助下面这个公式(3)
I
D
Q
=
K
∗
(
U
G
S
Q
−
U
G
S
T
H
)
2
=
3.49
m
A
I_{DQ}=K*(U_{GSQ}-U_{GSTH})^{2}=3.49mA
IDQ=K∗(UGSQ−UGSTH)2=3.49mA(3)
(3)式是MOS管转移特性曲线的方程,式中这个K值是个比较关键的点,我们后面分析。
U
D
S
Q
=
12
V
−
R
1
∗
I
D
Q
=
5.02
V
U_{DSQ}=12V-R1*I_{DQ}=5.02V
UDSQ=12V−R1∗IDQ=5.02V (4)
以上这几个公式求出来的值就是MOS管在静态工作时的几个关键参数。
我们可以先在仿真中验证一下正确性:
如上图,我们在电路中串入一个直流电流表测量电路中的
I
D
Q
I_{DQ}
IDQ;并联一个直流电压表测量
U
D
S
Q
U_{DSQ}
UDSQ。将两个表测量的值和上面计算出来的值对比发现,结果非常接近,说明计算正确。
接下来是判断MOS管的工作状态:
在本例中,由上面计算得到的静态参数可以进行下面的计算验证。
U
D
S
Q
>
U
G
S
Q
−
U
G
S
T
H
U_{DSQ}>U_{GSQ}-U_{GSTH}
UDSQ>UGSQ−UGSTH (5)
当满足该条件时,MOS管即工作在放大状态,当然,前提条件是
U
G
S
Q
>
U
G
S
T
H
U_{GSQ}>U_{GSTH}
UGSQ>UGSTH保证当前MOS处于导通状态。
下面是小信号的动态等效电路分析:
该等效电路是对MOS管模型的等效,等效出一个压控电流源,即
u
g
s
u_{gs}
ugs控制
i
d
i_{d}
id,也就是图中的
i
d
=
g
m
∗
u
g
s
i_{d}=g_{m}*u_{gs}
id=gm∗ugs(6)
该等式我们要注意两点:
①注意等式中使用的字母和下标都是小写,表明这里的值都是纯交流,没有直流信号
②式中的
g
m
g_{m}
gm表示跨导,即MOS管的转移特性曲线的斜率。小信号的等效就说明输入信号是一个幅值很小的信号,往往分析的时候就是计算在静态工作点Q处的
g
m
g_{m}
gm。
g
m
=
2
∗
K
∗
I
D
Q
g_{m}=2*\sqrt{K*I_{DQ}}
gm=2∗K∗IDQ(7)
g
m
=
2
∗
0.0502
A
/
V
2
∗
3.49
m
A
=
26.47
m
A
/
V
g_{m}=2*\sqrt{0.0502A/V^{2}*3.49mA}=26.47mA/V
gm=2∗0.0502A/V2∗3.49mA=26.47mA/V
至此,计算中需要用到的一些公式参数基本都出现了,接下来开始计算验证。
首先计算一下
i
d
i_{d}
id
i
d
=
g
m
∗
u
g
s
=
2
∗
0.0502
A
/
V
2
∗
3.49
m
A
∗
u
i
i_{d}=g_{m}*u_{gs}=2*\sqrt{0.0502A/V^{2}*3.49mA}*u_{i}
id=gm∗ugs=2∗0.0502A/V2∗3.49mA∗ui
这里我只计算幅值,
i
d
p
k
=
374.37
u
A
i_{_dpk}=374.37uA
idpk=374.37uA
然后计算信号放大倍数
A
V
=
u
o
u
i
=
−
48.126
A_{V}=\frac{u_{o}}{u_{i}}=-48.126
AV=uiuo=−48.126
则对于输入信号
u
i
p
k
=
14.142
m
V
u_{ipk}=14.142mV
uipk=14.142mV
u
o
p
k
=
−
48.126
∗
14.142
m
V
=
−
680.599
m
V
u_{_opk}=-48.126*14.142mV=-680.599mV
uopk=−48.126∗14.142mV=−680.599mV
观察仿真波形:
可以看到,这里主要观察了
i
d
i_{d}
id和
u
o
u_{o}
uo的值,我们看到这里的两个幅值和计算的幅值相差无几,说明整个分析过程正确。注意波形图中设置的是交流形式,意即没有包含直流信号。如果我们调整为观察交直流信号。
u
o
u_{o}
uo输出信号是经过电容滤波之后的信号,没有直流信号。我们调整观察点到电容前端,就可以观察到直流信号,如下图所示:
至此我们简单分析了基于三电阻的MOS管放大电路的计算。分析中涉及到的理论计算均来自模拟电路课本,参考包括杨老师的新概念等。
针对计算中给出的
K
K
K值,在考试中往往会给出该值,所以计算较为方便。但是在实际应用电路中,在某个MOS的datasheet中是不会给出该值的,所以往往会无法计算。结合杨老师在新概念课堂中的建议,可以在对应的转移特性曲线上取一点,找出对应的
u
G
S
u_{GS}
uGS和
i
D
i_{D}
iD的值,可以求解出一个
K
K
K值。
但是在实际分析电路中可知,针对不同点,求解出的
K
K
K值相差比较大,因此在实际应用中,会存在一定偏差。
2.四电阻电路
未完待续
3.电感电路
未完待续