最邻近插值和线性插值

最邻近插值

在图像分割任务中:原图的缩放一般采用双线性插值,用于上采样或下采样;而标注图像的缩放有特定的规则,需使用最临近插值,不用于上采样或下采样。

自定义函数

 这个是通过输入原始图像和一个缩放因子来对图像进行邻近插值:

def nearest_neighbor_interpolation1(image, scale_factor):
    """
    最邻近插值算法
    :paraninput_array
    :输入图像数组:param output_shape
    :输出图像的 shape:return
    :输出图像数组"""
    # 输入图像的宽高
    height, width = image.shape[:2]
    # 计算输出图像的宽高
    out_height = int(height * scale_factor)
    out_width = int(width * scale_factor)

    # 创建输出图像
    output_image = np.zeros((out_height, out_width, 3), dtype = np.uint8)

    # 遍历输出图像的每个像素,分别计算其在输入图像中最近的像素坐标,并将其像素值赋值给当前像素
    for out_y in range(out_height):
        for out_x in range(out_width):
            # 计算当前像素在输入图像中的坐标
            input_x = int(round(out_x / scale_factor))
            input_y = int(round(out_y / scale_factor))
            # 判断计算出来的输入像素坐标是否越界,如果越界则赋值为边界像素
            input_x = min(input_x, width - 1)
            input_y = min(input_y, height - 1)
            # 将输入像素的像素值赋值给输出像素
            output_image[out_y, out_x] = image[input_y, input_x]

    return output_image

  这个是通过输入原始图像和目标图像的高和宽来对图像进行邻近插值:

def nearest_neighbor_interpolation2(image, target_height, target_width):
    """
    Nearest neighbor interpolation algorithm
    :param image: Input image array
    :param target_height: Target height of the output image
    :param target_width: Target width of the output image
    :return: Output image array
    """
    # Input image dimensions
    height, width = image.shape[:2]

    # Create output image
    output_image = np.zeros((target_height, target_width, 3), dtype=np.uint8)

    # Calculate scaling factors
    scale_x = target_width / width
    scale_y = target_height / height

    # Traverse each pixel in the output image, calculate the nearest pixel coordinates in the input image,
    # and assign its pixel value to the current pixel
    for out_y in range(target_height):
        for out_x in range(target_width):
            # Calculate the nearest pixel coordinates in the input image
            input_x = int(round(out_x / scale_x))
            input_y = int(round(out_y / scale_y))
            # Ensure that the calculated input pixel coordinates are within the bounds of the input image
            input_x = min(input_x, width - 1)
            input_y = min(input_y, height - 1)
            # Assign the pixel value of the input pixel to the output pixel
            output_image[out_y, out_x] = image[input_y, input_x]

    return output_image

 使用第二个函数将图像进行可视化:

# 读取图像
image_path = "D:\\My Data\\Figure\\下载.jpg"
image = np.array(Image.open(image_path))

# 目标图像大小
target_height, target_width = 512, 512

# 使用自定义线性插值对图像进行缩放
output_image = nearest_neighbor_interpolation2(image, target_height, target_width)

import matplotlib.pyplot as plt

# 可视化处理后的图像
plt.imshow(output_image)
plt.axis('off')  # 关闭坐标轴
plt.show()

 torch官方定义的函数

 F.interpolate(image_tensor, size=(target_height, target_width), mode='nearest')

from PIL import Image
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image_path = "D:\\My Data\\Figure\\下载.jpg"
image = Image.open(image_path)

# 将图像转换为 PyTorch 张量,并添加批量维度
image_tensor = torch.tensor(np.array(image), dtype=torch.float32).permute(2, 0, 1).unsqueeze(0)

# 目标图像大小
target_height, target_width = 512, 512

# 使用最近邻插值对图像进行缩放
output_nearest = F.interpolate(image_tensor, size=(target_height, target_width), mode='nearest')
# 将张量转换回 numpy 数组
output_nearest_array = output_nearest.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)

 将图像进行可视化

# 可视化处理后的图像
plt.imshow(output_nearest_array)
plt.axis('off')  # 关闭坐标轴
plt.show()

 双线性插值

自定义函数

 corner_align=False为不使用角对齐为边对齐,True为使用角对齐,这个是处理灰度图像的双线性插值

import numpy as np
import torch
import torch.nn.functional as F

def bilinear_interpolation(image, out_height, out_width, corner_align=False):
    # 获取输入图像的宽高
    height, width = image.shape[:2]

    # 创建输出图像
    output_image =np.zeros((out_height, out_width), dtype=np.float32)

    # 计算x、y轴缩放因子
    scale_x_corner = float(width - 1) / (out_width - 1)  # (3-1)/(5-1)=0.5
    scale_y_corner = float(height - 1) / (out_height - 1)  # (3-1)/(5-1)=0.5

    scale_x = float(width) / out_width  # 3/5=0.6
    scale_y = float(height) / out_height

    # 遍历输出图像的每个像素,分别计算其在输入图像中最近的四个像素的坐标,然后按照加权值计算当前像素的像素值
    for out_y in range(out_height):
        for out_x in range(out_width):
            if corner_align == True:
                # 计算当前像素在输入图像中的位置
                x = out_x * scale_x_corner
                y = out_y * scale_y_corner
            else:
                x = (out_x + 0.5) * scale_x - 0.5
                y = (out_y + 0.5) * scale_y - 0.5
                x = np.clip(x, 0, width - 1)
                y = np.clip(y, 0, height - 1)

            # 获取当前像素在输入图像中最近的四个像素的坐标
            x0, y0 = int(x), int(y)
            x1, y1 = x0 + 1, y0 + 1

            #对原图像边缘进行特殊处理
            if x0 == width - 1:
                xθ = width - 2
                x1 = width - 1
            if y0 == height - 1:
                yθ = height - 2
                y1 = height - 1

            xd = x - x0
            yd = y - y0
            p00 = image[y0, x0]
            p01 = image[y0, x1]
            p10 = image[y1, x0]
            p11 = image[y1, x1]
            x0y = p01 * xd + (1 - xd) * p00
            x1y = p11 * xd + (1 - xd) * p10
            output_image[out_y, out_x] = x1y * yd + (1 - yd) * x0y

    return output_image

def bilinear_interpolation(image,out_height, out_width, corner_align=False):
    # 获取输入图像的宽高
    height, width = image.shape[:2]

    # 创建输出图像
    output_image =np.zeros((out_height, out_width),dtype=np.float32)

    # 计算x、y轴缩放因子
    scale_x_corner = float(width - 1) / (out_width - 1)  # (3-1)/(5-1)=0.5
    scale_y_corner = float(height - 1) / (out_height - 1)  # (3-1)/(5-1)=0.5

    scale_x = float(width) / out_width  # 3/5=0.6
    scale_y = float(height) / out_height

    # 遍历输出图像的每个像素,分别计算其在输入图像中最近的四个像素的坐标,然后按照加权值计算当前像素的像素值
    for out_y in range(out_height):
        for out_x in range(out_width):
            if corner_align == True:
                # 计算当前像素在输入图像中的位置
                x = out_x * scale_x_corner
                y = out_y * scale_y_corner
            else:
                x =(out_x + 0.5)* scale_x - 0.5
                y =(out_y + 0.5)* scale_y - 0.5
                x = np.clip(x, 0 , width - 1)
                y = np.clip(y, 0 , height - 1)

            # 获取当前像素在输入图像中最近的四个像素的坐标
            x0, y0 = int(x), int(y)
            x1, y1 = x0 + 1, y0 + 1

            #对原图像边缘进行特殊处理
            if x0 == width -1:
                xθ = width - 2
                x1 = width - 1
            if y0 == height -1:
                yθ = height - 2
                y1 = height - 1

            xd = x - x0
            yd = y - y0
            p00 = image[y0, x0]
            p01 = image[y0, x1]
            p10 = image[y1, x0]
            p11 = image[y1, x1]
            x0y = p01 * xd +(1 - xd) * p00
            x1y = p11 * xd +(1 - xd) * p10
            output_image[out_y, out_x] = x1y * yd +(1 - yd) * x0y

    return output_image

我们随机生成一张3×3的图像,与torch中的代码进行比较,查看输出结果:

image_array = np.random.rand(3,3)
image = torch.as_tensor(image_array, dtype=torch.float32).unsqueeze(0).unsqueeze(0)

result = F.interpolate(image, size = (5, 5), mode='bilinear', align_corners=False)
result1 = F.interpolate(image, size = (5, 5), mode='bilinear', align_corners=True)

image = bilinear_interpolation(image_array, 5, 5, corner_align=False)
image1 = bilinear_interpolation(image_array, 5, 5, corner_align=True)

print('image:', image)
print('result:', result)
print('image1:', image1)
print('result1:', result1)

 输出结果对比

image: [[0.8258898  0.82657003 0.8275904  0.6760163  0.5749669 ]
 [0.6941199  0.68340033 0.667321   0.5252699  0.4305692 ]
 [0.49646503 0.46864578 0.42691696 0.29915038 0.21397266]
 [0.4779709  0.5350506  0.62067014 0.63449866 0.64371765]
 [0.46564147 0.57932043 0.74983895 0.8580642  0.9302143 ]]
result: tensor([[[[0.8259, 0.8266, 0.8276, 0.6760, 0.5750],
          [0.6941, 0.6834, 0.6673, 0.5253, 0.4306],
          [0.4965, 0.4686, 0.4269, 0.2992, 0.2140],
          [0.4780, 0.5351, 0.6207, 0.6345, 0.6437],
          [0.4656, 0.5793, 0.7498, 0.8581, 0.9302]]]])
image1: [[0.8258898  0.8267401  0.8275904  0.7012786  0.5749669 ]
 [0.6611774  0.6442155  0.62725365 0.5108617  0.39446977]
 [0.49646503 0.461691   0.42691696 0.3204448  0.21397266]
 [0.48105323 0.5347156  0.58837795 0.5802357  0.5720935 ]
 [0.46564147 0.6077402  0.74983895 0.8400266  0.9302143 ]]
result1: tensor([[[[0.8259, 0.8267, 0.8276, 0.7013, 0.5750],
          [0.6612, 0.6442, 0.6273, 0.5109, 0.3945],
          [0.4965, 0.4617, 0.4269, 0.3204, 0.2140],
          [0.4811, 0.5347, 0.5884, 0.5802, 0.5721],
          [0.4656, 0.6077, 0.7498, 0.8400, 0.9302]]]])

进程已结束,退出代码0
 

 这个是处理彩色图像3通道的双线性插值:不一样的地方为output_image = np.zeros((out_height, out_width, 3), dtype=np.uint8)。

def bilinear_interpolation(image, out_height, out_width, corner_align=False):
    height, width = image.shape[:2]
    output_image = np.zeros((out_height, out_width, 3), dtype=np.uint8)

    scale_x_corner = float(width - 1) / (out_width - 1)
    scale_y_corner = float(height - 1) / (out_height - 1)
    scale_x = float(width) / out_width
    scale_y = float(height) / out_height

    for out_y in range(out_height):
        for out_x in range(out_width):
            if corner_align:
                x = out_x * scale_x_corner
                y = out_y * scale_y_corner
            else:
                x = (out_x + 0.5) * scale_x - 0.5
                y = (out_y + 0.5) * scale_y - 0.5
                x = np.clip(x, 0, width - 1)
                y = np.clip(y, 0, height - 1)

            x0, y0 = int(x), int(y)
            x1, y1 = x0 + 1, y0 + 1
            if x0 == width - 1:
                x1 = width - 1
            if y0 == height - 1:
                y1 = height - 1

            xd = x - x0
            yd = y - y0
            p00 = image[y0, x0]
            p01 = image[y0, x1]
            p10 = image[y1, x0]
            p11 = image[y1, x1]
            x0y = p01 * xd + (1 - xd) * p00
            x1y = p11 * xd + (1 - xd) * p10
            output_image[out_y, out_x] = x1y * yd + (1 - yd) * x0y

    return output_image

  torch官方定义的函数

from PIL import Image
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image_path = "D:\\My Data\\Figure\\下载.jpg"
image = Image.open(image_path)

# 将图像转换为 PyTorch 张量,并添加批量维度
image_tensor = torch.tensor(np.array(image), dtype=torch.float32).permute(2, 0, 1).unsqueeze(0)

# 目标图像大小
target_height, target_width = 512, 512


# 使用双线性插值角对齐对图像进行缩放
output_bilinear_corners_True = F.interpolate(image_tensor, size=(target_height, target_width), mode='bilinear', align_corners=True)
# 将张量转换回 numpy 数组
output_bilinear_corners_True_array = output_bilinear_corners_True.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)

# 使用双线性插值边对齐对图像进行缩放
output_bilinear_corners_False = F.interpolate(image_tensor, size=(target_height, target_width), mode='bilinear', align_corners=False)
# 将张量转换回 numpy 数组
output_bilinear_corners_False_array = output_bilinear_corners_False.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)

 将其进行可视化

# 可视化处理后的图像
plt.imshow(output_bilinear_corners_True_array)
plt.axis('off')  # 关闭坐标轴
plt.show()

例子 

自定义函数图像处理

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F

def bilinear_interpolation(image, out_height, out_width, corner_align=False):
    height, width = image.shape[:2]
    output_image = np.zeros((out_height, out_width, 3), dtype=np.uint8)

    scale_x_corner = float(width - 1) / (out_width - 1)
    scale_y_corner = float(height - 1) / (out_height - 1)
    scale_x = float(width) / out_width
    scale_y = float(height) / out_height

    for out_y in range(out_height):
        for out_x in range(out_width):
            if corner_align:
                x = out_x * scale_x_corner
                y = out_y * scale_y_corner
            else:
                x = (out_x + 0.5) * scale_x - 0.5
                y = (out_y + 0.5) * scale_y - 0.5
                x = np.clip(x, 0, width - 1)
                y = np.clip(y, 0, height - 1)

            x0, y0 = int(x), int(y)
            x1, y1 = x0 + 1, y0 + 1
            if x0 == width - 1:
                x1 = width - 1
            if y0 == height - 1:
                y1 = height - 1

            xd = x - x0
            yd = y - y0
            p00 = image[y0, x0]
            p01 = image[y0, x1]
            p10 = image[y1, x0]
            p11 = image[y1, x1]
            x0y = p01 * xd + (1 - xd) * p00
            x1y = p11 * xd + (1 - xd) * p10
            output_image[out_y, out_x] = x1y * yd + (1 - yd) * x0y

    return output_image


def nearest_neighbor_interpolation(image, scale_factor):
    """
    最邻近插值算法
    :paraninput_array
    :输入图像数组:param output_shape
    :输出图像的 shape:return
    :输出图像数组"""
    # 输入图像的宽高
    height, width = image.shape[:2]
    # 计算输出图像的宽高
    out_height = int(height * scale_factor)
    out_width = int(width * scale_factor)

    # 创建输出图像
    output_image = np.zeros((out_height, out_width, 3), dtype = np.uint8)

    # 遍历输出图像的每个像素,分别计算其在输入图像中最近的像素坐标,并将其像素值赋值给当前像素
    for out_y in range(out_height):
        for out_x in range(out_width):
            # 计算当前像素在输入图像中的坐标
            input_x = int(round(out_x / scale_factor))
            input_y = int(round(out_y / scale_factor))
            # 判断计算出来的输入像素坐标是否越界,如果越界则赋值为边界像素
            input_x = min(input_x, width - 1)
            input_y = min(input_y, height - 1)
            # 将输入像素的像素值赋值给输出像素
            output_image[out_y, out_x] = image[input_y, input_x]

    return output_image




#读取原始图像
input_image = Image.open("D:\My Data\Figure\下载.jpg")
image_array = np.array(input_image)
image_tensor = torch.as_tensor(image_array, dtype=torch.float32)
# 添加批量维度,并将通道维度放在第二个位置
image_tensor = image_tensor.permute(2, 0, 1).unsqueeze(0)  # 转换为 (3, 288, 200) 的张量
#最近邻插值输出缩放后的图像
output_array = nearest_neighbor_interpolation(image_array,1.5)
output_nearest_neighbor_interpolation = Image.fromarray(output_array)


#双线性插值输出缩放后的图像,使用角对齐
output_bilinear_corner_True = bilinear_interpolation(image_array, 512, 512, corner_align=True)
# output_bilinear_corner_True = Image.fromarray(output_bilinear_corner_True)

# output_bilinear_corner_True = F.interpolate(image_tensor, size = (512, 512), mode='bilinear', align_corners=True)
# output_bilinear_corner_True =output_bilinear_corner_True.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)

#双线性插值输出缩放后的图像,使用边对齐
output_bilinear_corner_False = bilinear_interpolation(image_array, 512, 512, corner_align=False)
# output_bilinear_corner_False = Image.fromarray(output_bilinear_corner_False)

# output_bilinear_corner_False = F.interpolate(image_tensor, size = (512, 512), mode='bilinear', align_corners=False)
# output_bilinear_corner_False = output_bilinear_corner_False.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)
print('原始图像 :', image_array.shape )
print('邻近插值 :', output_array.shape )
print('双线性插值角对齐:', output_bilinear_corner_True.shape )
print('双线性插值边对齐 :', output_bilinear_corner_False.shape )

# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimSun']# 创建一个包含四个子图的画布
# 创建一个包含四个子图的画布
fig, axes = plt.subplots(2, 2)

# 第一张子图:原始图像
axes[0, 0].imshow(input_image)
axes[0, 0].set_title('原始图像')
axes[0, 0].axis('off')

# 第二张子图:插值后的图像
axes[0, 1].imshow(output_nearest_neighbor_interpolation)
axes[0, 1].set_title('邻近插值')
axes[0, 1].axis('off')

# 第三张子图:缩放后的图像
axes[1, 0].imshow(output_bilinear_corner_True)
axes[1, 0].set_title('双线性插值角对齐')
axes[1, 0].axis('off')

# 第四张子图:其他图像(你想添加的图像)
axes[1, 1].imshow(output_bilinear_corner_False)
axes[1, 1].set_title('双线性插值边对齐')
axes[1, 1].axis('off')

# 调整布局,防止标题重叠
plt.tight_layout()

# 展示图像
plt.show()

torch官方函数处理图像对比

from PIL import Image
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image_path = "D:\\My Data\\Figure\\下载.jpg"
image = Image.open(image_path)

# 将图像转换为 PyTorch 张量,并添加批量维度
image_tensor = torch.tensor(np.array(image), dtype=torch.float32).permute(2, 0, 1).unsqueeze(0)

# 目标图像大小
target_height, target_width = 512, 512

# 使用最近邻插值对图像进行缩放
output_nearest = F.interpolate(image_tensor, size=(target_height, target_width), mode='nearest')
# 将张量转换回 numpy 数组
output_nearest_array = output_nearest.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)

# 使用双线性插值角对齐对图像进行缩放
output_bilinear_corners_True = F.interpolate(image_tensor, size=(target_height, target_width), mode='bilinear', align_corners=True)
# 将张量转换回 numpy 数组
output_bilinear_corners_True_array = output_bilinear_corners_True.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)

# 使用双线性插值边对齐对图像进行缩放
output_bilinear_corners_False = F.interpolate(image_tensor, size=(target_height, target_width), mode='bilinear', align_corners=False)
# 将张量转换回 numpy 数组
output_bilinear_corners_False_array = output_bilinear_corners_False.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)


print('原始图像:', np.array(image).shape )
print('邻近插值 :', output_nearest_array.shape )
print('双线性插值角对齐 :', output_bilinear_corners_True_array.shape )
print('双线性插值边对齐 :', output_bilinear_corners_False_array .shape )

# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimSun']# 创建一个包含四个子图的画布
fig, axes = plt.subplots(2, 2)

# 第一张子图:原始图像
axes[0, 0].imshow(image)
axes[0, 0].set_title('原始图像')
axes[0, 0].axis('off')

# 第二张子图:插值后的图像
axes[0, 1].imshow(output_nearest_array)
axes[0, 1].set_title('邻近插值')
axes[0, 1].axis('off')

# 第三张子图:缩放后的图像
axes[1, 0].imshow(output_bilinear_corners_True_array)
axes[1, 0].set_title('双线性插值角对齐')
axes[1, 0].axis('off')

# 第四张子图:其他图像(你想添加的图像)
axes[1, 1].imshow(output_bilinear_corners_False_array)
axes[1, 1].set_title('双线性插值边对齐')
axes[1, 1].axis('off')

# 调整布局,防止标题重叠
plt.tight_layout()

# 展示图像
plt.show()

参考视频:

插值算法 | 最近邻插值法_哔哩哔哩_bilibili

插值算法 |双线性插值法_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/560608.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

面试算法准备:树

这里写目录标题 1.树的基础1.1 首次理解1.2 深入理解1.2.1后序位置的特殊之处1.2.2 二叉树的思维指导 1.3 层序遍历1.4 二叉搜索树 BST 2.二叉树例题2.1 树的最大深度2.2 二叉树的直径2.3 二叉树的翻转2.4 填充每个节点的下一个右侧节点指针2.5 二叉树展开为链表 3 BST例题3.1 …

findImg找图工具

findImg 安装 npm install findImg -g 启动 findImg run 介绍 找出当前目录下的所有图片(包括svg的symbol格式)在浏览器中显示出来 源码 https://github.com/HuXin957/find-img 场景 例如前端项目中的img目录,大家都在往里面放图片&#xff…

9月BTE第8届广州国际生物技术大会暨展览会,全媒体聚焦下的高精尖行业盛会

政策春风助力,共迎大湾区生物医药行业50亿红利 今年3月“创新药”首次写入国务院政府工作报告之后,广州、珠海、北京多地政府纷纷同步出台了多项细化政策,广州最高支持额度高达50亿元,全链条为生物医药产业提供资金支持&#xff…

力扣:104. 二叉树的最大深度(Java,DFS,BFS)

目录 题目描述:输入:输出:代码实现:1.深度优先搜索(递归)2.广度优先搜索(队列) 题目描述: 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从…

排序 “壹” 之插入排序

目录 ​编辑 一、排序的概念 1、排序: 2、稳定性: 3、内部排序: 4、外部排序: 二、排序的运用 三、插入排序算法实现 3.1 基本思想 3.2 直接插入排序 3.2.1 排序过程: 3.2.2 代码示例: 3.2.3…

PMP每年考几次,费用如何?

今年的的考试分别分布在3月、6月、8月、11月,一般来说PMP的考试时间是3、6、9、12月,如果有特殊情况PMI也会及时进行调整,具体看他们官网的通知了。 PMP的考试费用全球是统一的,在国内考试报名费用是3900元,如果考试没…

JVM类加载基本流程及双亲委派模型

1.JVM内存区域划分 一个运行起来的Java进程就是一个JVM虚拟机,这就需要从操作系统中申请一片内存区域。JVM申请到内存之后,会把这个内存划分为几个区域,每个区域都有各自的作用。 一般会把内存划分为四个区域:方法区(也称 "…

在PostgreSQL中,如何创建一个触发器并在特定事件发生时执行自定义操作?

文章目录 解决方案示例代码1. 创建自定义函数2. 创建触发器 解释 在PostgreSQL中,触发器(trigger)是一种数据库对象,它能在特定的事件(如INSERT、UPDATE或DELETE)发生时自动执行一系列的操作。这些操作可以…

基于SSM,JSP超市进销存管理系统

目录 项目介绍 图片展示 运行环境 获取方式 项目介绍 权限划分:用户管理员 用户: 登录,注销,查看基本信息,修改基本信息 进货管理: 进货信息:可以新增进货,查询进货&#xff0…

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis

GRAF: Generative Radiance Fieldsfor 3D-Aware Image Synthesis(基于产生辐射场的三维图像合成) 思维导图:https://blog.csdn.net/weixin_53765004/article/details/137944206?csdn_share_tail%7B%22type%22%3A%22blog%22%2C%22rType%22%3…

突破速率界限:800G光模块的兴起

在以ChatGPT和NVIDIA DGX H200为代表的技术取得显著进步的时代,人工智能行业同样表现出明显地提升。除此之外,一项改变传统规则的创新出现了:800G光模块。这类优质的设备预示着数据传输和接收领域的变革性转变,成功引起了人们的兴…

【系统架构师】-案例考点(一)

1、软件架构设计 主要考点: 质量属性、软件架构风格、软件架构评估、MVC架构、面向服务的SOA架构、 DSSA、ABSD 1.1、质量属性 1、性能:指系统的响应能力,即要经过多长时间才能对某个事件做出响应,或者在某段时间内系统所能处理的事件的…

利用AQS(AbstractQueuedSynchronizer)实现一个线程同步器

目录 1. 前言 2. 什么是同步器 3. 同步器实现思路 Semaphore(信号量) 4. 代码实现 4.1. 创建互斥锁类 4.2 编写静态内部类,继承AQS 4.3 内部类实现AQS钩子函数 4.3 封装lock,unlock方法 4.4. 测试 5. 总结 本文章源码仓库:Conc…

FPGA - 基于自定义AXI FULL总线的PS和PL交互

前言 在FPGA - ZYNQ 基于Axi_Lite的PS和PL交互中,介绍了基于基于AXi_Lite的PL和PS交互,接下来构建基于基于Axi_Lite的PS和PL交互。 AXI_GP、AXI_HP和AXI_ACP接口 首先看一下ZYNQ SoC的系统框图,如下图所示。在图中,箭头方向代表…

Python 中整洁的并行输出

原文:https://bernsteinbear.com/blog/python-parallel-output/ 代码:https://gist.github.com/tekknolagi/4bee494a6e4483e4d849559ba53d067b Python 并行输出 使用进程和锁并行输出多个任务的状态。 注:以下代码在linux下可用&#xff0c…

Tcpdump -r 解析pcap文件

当我们使用命令抓包后,想在命令行直接读取筛选怎么办?-r参数就支持了这个 当你使用 tcpdump 的 -r 选项读取一个之前捕获的数据包文件,并想要筛选指定 IP 地址和端口的包时,你可以在命令中直接加入过滤表达式。这些过滤表达式可以…

数据可视化(六):Pandas爬取NBA球队排名、爬取历年中国人口数据、爬取中国大学排名、爬取sina股票数据、绘制精美函数图像

Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊! 喜欢我的博客的话,记得…

基于ThinkPHP框架开发的的站长在线工具箱网站PHP源码(可以作为流量站)

这是一套基于ThinkPHP框架开发的站长在线工具箱网站PHP源码,包含了多种在线工具,可以作为流量站使用。 项 目 地 址 : runruncode.com/php/19742.html 部署教程: 环境要求: - PHP版本需要大于等于7.2.5 - MySQL版…

element-ui合计逻辑踩坑

element-ui合计逻辑踩坑 1.快速实现一个合计 ​ Element UI所提供的el-table中提供了方便快捷的合计逻辑实现: ​ https://element.eleme.cn/#/zh-CN/component/table ​ 此实现方法在官方文档中介绍详细,此处不多赘述。 ​ 这里需要注意&#xff0c…

设备连接IoT云平台指南

一、简介 设备与IoT云间的通讯协议包含了MQTT,LwM2M/CoAP,HTTP/HTTP2,Modbus,OPC-UA,OPC-DA。而我们设备端与云端通讯主要用的协议是MQTT。那么设备端与IoT云间是如何创建通信的呢?以连接华为云IoT平台为例…