Don‘t fly solo! 量化之路,AI伴飞

在投资界,巴菲特与查理.芒格的神仙友谊,是他们财富神话之外的另一段传奇。巴菲特曾这样评价芒格:他用思想的力量拓展了我的视野,让我以火箭的速度,从猩猩进化到人类。

人生何幸能得到一知己。如果没有这样的机缘,在AI时代,至少我们做量化时,可以让AI来伴飞。

这篇文章,分享我用AI的几个小故事。


在讲统计推断方法时,需要介绍分位图(Quantile-Quantile Plot)这种可视化方法人类天生就有很强的通过视觉发现pattern的能力,所以介绍这种可视化方法几乎是不可缺少的。


左偏、正态和右偏分布的QQ图示例

但当时在编这部分教材时,我对QQ-plot的机制还有一点不太清晰:为什么要对相比较的两个随机变量进行排序,再进行绘图?为什么这样绘图如果得到的是一条直线,就意味着两个随机变量强相关?难道不应该是按随机变量发生的时间顺序为序吗?

启用GPT-4的多角色数据科学家扮演

这个问题无人可请教,哪怕我搜遍全网。后来,即使我通过反复实验和推理,已经明白了其中的道理,但毕竟这个知识点似乎无人提及过,心里多少有点不确定。于是,我请教了GPT-4。


最初的几次尝试没有得到我想要的结论,于是,我用了一点技巧,要求GPT-4把自己想像成为数据科学家。并且,为了避免错误,我使用了三个数据科学家进行角色扮演,让A和B分别提出观点,再让C来进行评论,这一次,我得到了非常理想的结果,即使请教人类专家可能亦不过如此。

先给GPT-4提供问题背景:
在这里插入图片描述

从背景可以看出,我已经掌握了QQ图的大致原理。如果X与Y是同分布的,那么,将X,Y排序后,分别以 [ I , X ] [I,X] [I,X] [ I , Y ] [I,Y] [I,Y] I I I为数组坐标)为点绘制的曲线,将会是相似曲线。


但QQ图将其进行了变换,直接取每一个坐标 I i I_i Ii对应的 X i X_i Xi Y i Y_i Yi作为曲线的坐标,从而将只绘制出一条曲线。如果二者同分布,则该曲线将是一条直线。当时我对这个变换的性质还不太了解。

我的问题一共有4个:

在这里插入图片描述

最后一问,实际上就是要问这个变换为什么能成立。

GPT-4的角色 – 数据科学家A发现了背景中第一段的一个错误。 [ X , X ] [X,X] [X,X]的图像为45度直线的条件并不需要 X X X是有序的。任何数据集的 [ X , X ] [X,X] [X,X]图像都会是45度直线(显然)。对于第2问,A的回答是:

!!! quote
If we don't standardize X (i.e., perform a z-score transformation), the Q-Q plot may not form a 45-degree line. The reason we standardize is to put X and Y on the same scale, which makes it easier to compare them.


对于第三问,数据科学家A认为:

在这里插入图片描述

n只影响图像的平滑度和我们判断时的精度。这一点非常准确。但我最关注的是第四位,随机变量X与Y究竟是如何对应的,为什么可以将它们按大小排序?A的回答是:

在这里插入图片描述

答案几乎已经呼之欲出了。即使两个随机变量服从同一分布,它们的值也不会相等,但是,出现在同一位置上的随机变量值,它们的差值会很小。因此,这样绘制出来的图,就是一条45度直线。

B和C主要是对A的结论进行质疑、比较,这里不赘述了。


无论A、B还是C都没有给出最终的解释:为什么如果随机变量X和Y服从同一分步的话,那么在同一位置i处的 X i X_i Xi Y i Y_i Yi应该是接近的。但它们确实证实了我们绘制QQ图之前,先对随机变量进行排序的思路是正确的。

在这里插入图片描述

如果上述概念还不好理解,我们可以再举一个更直观的例子。通过QQ图来判断两个证券标的是否存在强相关性。比如,我们以两支同行业个股为例,取它们最近250期日线,计算每日回报率,对其进行排序后绘图:

import matplotlib.pyplot as plt

r1 = hchj["close"][1:]/hchj["close"][:-1] - 1
r2 = xrhj["close"][1:]/xrhj["close"][:-1] - 1

plt.scatter(sorted(r1), sorted(r2))
x = np.linspace(np.min(r1), np.max(r1), 40)
plt.plot(x,x, '-', color='grey', markersize=1)
plt.text(np.max(r1), np.max(r1), "x=x")

我们将得到如下的分位图:

这就非常直观地显示出,两支个股的走势确实相关:在涨幅4%以下的区域,如果A下跌,那么B也下跌,并且幅度都差不多;如果A上涨,那么B也上涨;幅度也差不多。这正是相关性的含义。这里我们排除了时间,只比较了两个随机变量即日收益率。
在这里插入图片描述


跟着copilot学编程

有两个版本的copilot。一个是copilot,另一个,现在被叫作github copilot,是vscode中的一个扩展。后者2022年中就发布了,当时有6个月的免费试用期。试用期内一炮而红,迅速开启了收费模式。这也直接导致了同年11月同赛道的工具软件Kite的退出。

现在github copilot每月$10,尽管物有所值,但作为不是每天都coding的人来说,感觉如果能推出按token付费的模式是最好了。

它的两个免费版本,一个是对学生免费。有edu邮箱的可以抓紧在github上申请下。另一个是如果你的开源项目超过1000赞,则有机会申请到免费版。

一般我使用copilot作为编程补充。它在错误处理方面可以做得比我更细腻,另外,在写单元测试用例时(建议每个量化人都坚持这样做),自动补齐测试数据方面是一把好手。

但是我没有想到的是,有一天它还能教我学编程,让我了解了一个从来没有听说过的Python库。

整个事情由ETF期权交割日引起。近年来似乎形成了这样一个规律,每逢期权交割日,A股的波动就特别大,而且以向下波动为主。因此,量化程序需要把这些交割日作为因子纳入交易体系。


但是这些交割日的确定,出入意料地–。它的规则是:

股指期货的交割日为每月的第三周周五;ETF期权交割日为每月第四周的周三;A50交割日为相关月的倒数第二个交易日。

在刚刚过去的4月19日,是一个股指期货交割日。接下来的4月24日,则是ETF交割日。今年的交割日如下:


随手写了几行代码,发现这个日子还是比较难算的。于是打开copilot chat,问它:
在这里插入图片描述

Copilot并不知道股市日历,所以无法独立完成上述任务。这并不奇怪。令人惊喜地是,它使用了calendar.monthcalendar这个方法。尽管calendar是一个标准库,但我之前并不知道它还有这个用法。

import calendar

calendar.monthcalendar(2024, 4)

75%


在这个基础上改就容易多了。另一个有趣的例子,是让copilot帮我想函数名。

我喜欢使用这样一个因子,最近20天内,涨幅中位数与跌幅中位数的比率。显然,这个比值越大,说明做多的力量越强。

最初我使用caculate_ratio这个函数名。但几乎所有的因子计算都可以使用这个名字。因此,我让copilot给一个准确点的名字。copilot回答说,根据函数的功能,我们可以将函数名从calculate_ratio改为calculate_downward_exceeding_upward_median_ratio。这个名字更准确地描述了函数的功能:计算下跌幅度超过上涨中位数的比例。

不过,这个名字太长了,也不优雅。于是,我问copilot,名字可以再短一点吗?可以使用metaphore吗?Coplilot回答说:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/560508.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用共振峰提取元音音素/从声音生成口型动画

视频效果 我前段时间研究了下从声音提取共振峰的方法。今天测试了下实际效果。 我使用一段33秒的女声视频,提取元音后使用静态视位图序列生成了一个视频,效果如下: b站视频: https://www.bilibili.com/video/BV1JD421H7m9/?vd_…

泛型的初步认识(2)

前言~🥳🎉🎉🎉 hellohello~,大家好💕💕,这里是E绵绵呀✋✋ ,如果觉得这篇文章还不错的话还请点赞❤️❤️收藏💞 💞 关注💥&#x…

MYSQL之增删改查(中)

前言: 以下是MySQL最基本的增删改查语句,很多IT工作者都必须要会的命令,也 是IT行业面试最常考的知识点,由于是入门级基础命令,所有所有操作都建立在单表 上,未涉及多表操作。 4、“查”——之单表查询 My…

html select 支持内容过滤列表 -bootstrap实现

实现使用bootstrap-select插件 http://silviomoreto.github.io/bootstrap-select <!DOCTYPE html> <html> <meta charset"UTF-8"> <head><title>jQuery bootstrap-select可搜索多选下拉列表插件-www.daimajiayuan.com</title>&…

部署ELFK+zookeeper+kafka架构

目录 前言 一、环境部署 二、部署ELFK 1、ELFK ElasticSearch 集群部署 1.1 配置本地hosts文件 1.2 安装 elasticsearch-rpm 包并加载系统服务 1.3 修改 elasticsearch 主配置文件 1.4 创建数据存放路径并授权 1.5 启动elasticsearch是否成功开启 1.6 查看节点信息 …

面试不慌张:一文读懂FactoryBean的实现原理

大家好&#xff0c;我是石头~ 在深入探讨Spring框架内部机制时&#xff0c;FactoryBean无疑是一个关键角色&#xff0c;也是面试中经常出现的熟悉面孔。 不同于普通Java Bean&#xff0c;FactoryBean是一种特殊的Bean类型&#xff0c;它的存在并非为了提供业务逻辑&#xff0c;…

使用Python进行自动化测试

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 如何使用Python进行自动化测试&#xff1a;测试框架的选择与应用 自动化测试是软件开发过程…

代码随想录算法训练营DAY28|C++回溯算法Part.4|93.复原IP地址、78.子集、90.子集II

文章目录 93.复原IP地址思路确定非法的范围树形结构 伪代码 78.子集思路伪代码实现CPP代码 90.子集II思路CPP代码用used去重的办法用set去重的版本不使用used数组、set的版本 93.复原IP地址 力扣题目链接 文章讲解&#xff1a;93.复原IP地址 视频讲解&#xff1a;回溯算法如何分…

curlftpfs和fusermount

curlftpfs 是一种 Linux 系统下用来将 FTP 服务器挂载为文件系统的工具&#xff0c;这意味着可以通过本地目录来访问和操作 FTP 服务器上的文件。 挂载FTP服务器到本地系统 为了挂载FTP服务器到本地系统中&#xff0c;使用curlftpfs工具&#xff0c;可以按照以下格式书写命令…

如何通过MSTSC连接Ubuntu的远程桌面?

正文共&#xff1a;666 字 12 图&#xff0c;预估阅读时间&#xff1a;1 分钟 前面我们介绍了如何通过VNC连接Ubuntu 18.04的远程桌面&#xff08;Ubuntu 18.04开启远程桌面连接&#xff09;&#xff0c;非常简单。但是有小伙伴咨询如何使用微软的远程桌面连接MSTSC&#xff08…

黑灰产行业简介

参考&#xff1a;2021年黑灰产行业研究及趋势洞察报告 1. 有哪些场景面临大量黑灰产攻击&#xff1f; 1.营销活动场景 -- 该场景最为猖獗 1. 抹机及接码注册&#xff1a;黑灰产会使用抹机工具修改设备参数伪装成一台新设备&#xff0c;再配合联系卡商进行手机号接码&#xf…

项目7-音乐播放器3(删除模块+播放音乐模块设计)

1.播放音乐模块设计 1.1 请求响应设计 请求&#xff1a; { get, /music/get?pathxxx.mp3 } 响应&#xff1a; { 音乐数据本身的字节信息 } 1.2 后端代码 1. Files.readAllBytes(String path) : 读取文件中的所有字节&#xff0c;读入内存 &#xff…

java/C#语言开发的医疗信息系统10套源码

java/C#语言开发的医疗信息系统10套源码 云HIS系统源码&#xff0c;云LIS系统源码&#xff0c;PEIS体检系统&#xff0c;手麻系统 源 码&#xff0c;PACS系统源码&#xff0c;微源预约挂号源码&#xff0c;医院绩效考核源码&#xff0c;3D智能导诊系统源码&#xff0c;ADR药物…

UE5(基础动作)多人游戏制作蹲伏

1.创建输入操作&#xff0c;IA_Crouch 在输入映射中添加 IA_Crouch,在触发器中创建两个索引&#xff0c;已按下已松开来创建蹲伏输入。 蹲伏操作必须要勾选角色-角色移动-crouch勾选可蹲伏否则你的人物无法真正蹲下。 为蹲伏创建函数&#xff0c;创建布尔来判断是否蹲伏。 通过…

链表经典算法OJ题目

1.单链表相关经典算OJ题目1&#xff1a;移除链表元素 思路一 直接在原链表里删除val元素&#xff0c;然后让val前一个结点和后一个节点连接起来。 这时我们就需要3个指针来遍历链表&#xff1a; pcur —— 判断节点的val值是否于给定删除的val值相等 prev ——保存pcur的前…

LCR 023. 相交链表

给定两个单链表的头节点 headA 和 headB &#xff0c;请找出并返回两个单链表相交的起始节点。如果两个链表没有交点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意&#xff0c;函数返回结果后&#xf…

大话设计模式-装饰器模式

大话设计模式书中&#xff0c;作者举了一个穿衣服的例子来为我们引入装饰器模式。 概念 定义 装饰模式在书中的定义是&#xff1a;动态地给一个对象添加一些额外的职责&#xff0c;就增加功能来说&#xff0c;装饰模式比生成子类更灵活。 这句话直接去理解可能会有点抽象&#…

javase__进阶 day13stream流和方法引用

1.不可变集合 1.1 什么是不可变集合 ​ 是一个长度不可变&#xff0c;内容也无法修改的集合 1.2 使用场景 ​ 如果某个数据不能被修改&#xff0c;把它防御性地拷贝到不可变集合中是个很好的实践。 ​ 当集合对象被不可信的库调用时&#xff0c;不可变形式是安全的。 简单…

java:Java中的抽象类

什么是抽象类&#xff1a; 我们知道&#xff0c;类用来模拟现实的事物&#xff0c;一个类模拟一类事物&#xff0c;某个类的一个实例化对象可以模拟某个属于该类的具体事物。类中描绘了该类所有对象的共同的特性&#xff0c;当一个类中给出的信息足够全面时候&#xff0c;我们就…

如何从零开始创建React应用:简易指南

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…