椋鸟数据结构笔记#10:排序·中

文章目录

      • 四、归并排序
          • 时间复杂度
          • 实现
            • 递归实现
            • 非递归实现
          • 测试
          • 稳定性
      • 五、非比较排序
        • 5.1 计数排序
          • 时间复杂度
          • 实现
          • 测试
          • 局限性
        • 5.2 桶排序
          • 时间复杂度
          • 实现
          • 测试
        • 5.3 基数排序
          • 时间复杂度
          • 实现
          • 测试
          • 局限性

萌新的学习笔记,写错了恳请斧正。

四、归并排序

归并排序是一种非常高效的排序算法。基本思想是将一个大数组分成两半,分别对这两半进行排序,然后将排序好的两部分合并在一起。这个过程递归进行,每次将数组分半,直到每个部分只有一个元素,自然是有序的,最终得到一个完整的有序数组。

归并排序的步骤如下:

  1. 分割:把当前序列平均分割成两半。
  2. 递归排序:递归地对这两半进行归并排序,直到分割的子序列只包含一个元素。
  3. 合并:将两个有序的子序列合并成一个有序序列。
时间复杂度

归并排序的时间复杂度为 O ( N log ⁡   N ) O(N\log\,N) O(NlogN)​,在最好最坏情况都是如此。是一种效率稳定的排序方法。

实现
递归实现
void _MergeSort(int* arr, int left, int right, int* tmp)
{
	if (left >= right)
	{
		return;
	}

	int mid = (left + right) / 2;
	//[left, mid] [mid + 1, right]
	
	_MergeSort(arr, left, mid, tmp);
	_MergeSort(arr, mid + 1, right, tmp);

	//合并
	int begin1 = left, end1 = mid;
	int begin2 = mid + 1, end2 = right;
	int index = left;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (arr[begin1] < arr[begin2])
		{
			tmp[index++] = arr[begin1++];
		}
		else
		{
			tmp[index++] = arr[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		tmp[index++] = arr[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[index++] = arr[begin2++];
	}
	memcpy(arr + left, tmp + left, sizeof(int) * (right - left + 1));
}

void MergeSort(int* arr, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc");
		return;
	}

	_MergeSort(arr, 0, n - 1, tmp);

	free(tmp);
	tmp = NULL;
}
非递归实现

同样的,归并排序的递归也可以整合为非递归的形式:

void MergeSortNonR(int* arr, int n)
{
	int* tmp = (int*)malloc(n * sizeof(int));
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	for (int gap = 1; gap < n; gap *= 2)
	{
		for (int j = 0; j < n; j += 2 * gap)
		{
			int begin1 = j, end1 = begin1 + gap - 1;
			int begin2 = begin1 + gap, end2 = begin2 + gap - 1;
			if (end1 >= n || begin2 >= n)
			{
				break;
			}
			if (end2 >= n)
			{
				end2 = n - 1;
			}
			int i = j;
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (arr[begin1] < arr[begin2])
				{
					tmp[i++] = arr[begin1++];
				}
				else
				{
					tmp[i++] = arr[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				tmp[i++] = arr[begin1++];
			}
			while (begin2 <= end2)
			{
				tmp[i++] = arr[begin2++];
			}
			memcpy(arr + j, tmp + j, sizeof(int) * (end2 - j + 1));	//用j不用begin1,begin1已经改变
		}
	}
	free(tmp);
	tmp = NULL;
}
测试

下面是对一千万个随机数据的排序测试

稳定性

归并排序是稳定的。

五、非比较排序

非比较排序不通过直接比较元素之间的大小关系来排序,而是利用其他方法,如数字或者字符串的特性。

非比较排序往往能达到非常非常高的时间效率,但是也往往受到非常大的使用限制

5.1 计数排序

计数排序使用一个额外的数组来记录每个值的出现次数,然后根据这些计数来组织输出排序结果。

计数排序的步骤:

  1. 找出待排序数组中的最大值和最小值,确定计数数组的长度。
  2. 创建并初始化计数数组,索引代表原数组中的元素,值代表该元素出现的次数。
  3. 遍历原数组,更新计数数组:对于原数组中的每一个元素,将计数数组对应索引的值增加1。
  4. 根据计数数组,重构原数组:遍历计数数组,根据每个索引的计数,在原数组中按顺序填充相应的元素。
时间复杂度

计数排序的时间复杂度是 O ( N + K ) O(N+K) O(N+K),其中K是数组中数据跨度的范围大小(比方说一个数组中所有数据都是1,那这个跨度就是1,如果里面有一个1变成了100万,那K就直接变成了100万)。

所以说,如果数据跨度比较小,计数排序的时间复杂度就可以认为是 O ( N ) O(N) O(N),其效率非常离谱。

实现
void CountSort(int* arr, int n)
{
	int max = arr[0];
	int min = arr[0];
	for (int i = 1; i < n; ++i)
	{
		if (arr[i] > max)
		{
			max = arr[i];
		}
		if (arr[i] < min)
		{
			min = arr[i];
		}
	}
	int range = max - min + 1;
	int* count = (int*)malloc(sizeof(int) * range);
	if (count == NULL)
	{
		perror("malloc");
		return;
	}
	memset(count, 0, sizeof(int) * range);
	for (int i = 0; i < n; ++i)
	{
		count[arr[i] - min]++;
	}
	int index = 0;
	for (int i = 0; i < range; ++i)
	{
		while (count[i]--)
		{
			arr[index++] = i + min;
		}
	}
	free(count);
	count = NULL;
}
测试

下面是对一千万个随机数据的排序测试(数据在0到32767):

下面是对一千万个随机数据的排序测试(数据在0到十亿):

局限性

就像上面所说,计数排序只有在数据跨度较小时能够获得极高的时间效率。而且计数排序只能用于排序整型数据。另外,其空间复杂度较高。

5.2 桶排序

注意:桶排序效率高的离谱,局限性也高的离谱,如果还是随便生成大量数据测试可能导致程序崩溃甚至电脑卡死!

桶排序是基于基数排序和分布的一种排序算法。其基本思想是将一个区间内的数据分散到多个有序的桶中,然后分别对每个桶中的元素进行排序,最后将各个桶中的元素按顺序合并,从而得到一个完全有序的数组。

桶排序的步骤描述起来较难理解,下面在代码部分详细解释。

时间复杂度

桶排序时间复杂度最低可达 O ( N ) O(N) O(N),非常高。但是但凡数据跨度比较大、bucketsize(下面会解释是什么)选取的函数不那么合适,就会导致时间和空间复杂度剧烈变化,可能直接造成代码崩溃。

实现
void BucketSort(int* arr, int n)
{
	int max = arr[0];
	int min = arr[0];
	for (int i = 1; i < n; ++i)
	{
		if (arr[i] > max)
		{
			max = arr[i];
		}
		if (arr[i] < min)
		{
			min = arr[i];
		}
	}
	int range = max - min + 1;
	int bucketSize = 5;	//这里对不同的情形需要设置不同的数字,效率差距非常大
	int bucketCount = range / bucketSize + 1;
	int** bucket = (int**)malloc(sizeof(int*) * bucketCount);
	for (int i = 0; i < bucketCount; ++i)
	{
		bucket[i] = (int*)malloc(sizeof(int) * n);
	}
	int* count = (int*)malloc(sizeof(int) * bucketCount);
	memset(count, 0, sizeof(int) * bucketCount);
	for (int i = 0; i < n; ++i)
	{
		int index = (arr[i] - min) / bucketSize;
		bucket[index][count[index]++] = arr[i];
	}
	int index = 0;
	for (int i = 0; i < bucketCount; ++i)
	{
		InsertSort(bucket[i], count[i]);	//采用插入排序只是一种方法,这里不唯一
		for (int j = 0; j < count[i]; ++j)
		{
			arr[index++] = bucket[i][j];
		}
	}
	for (int i = 0; i < bucketCount; ++i)
	{
		free(bucket[i]);
	}
	free(bucket);
	bucket = NULL;
	free(count);
	count = NULL;
}

在上方实现中,我们首先确定了数据范围range。

然后我们要根据 range 确定每一个桶内我们要存放范围大小为多少的数据,也就是bucketSize。注意,这不是说每个bucket只能放bucketSize个数据,而是可以放多少值不同的数据(相同值可以无限叠放)。

随后我们就计算出了桶的数量bucketCount,并且创建了这么多桶。同时每一个桶都配备了一个计数器(对应到count数组里)。

最后就是与计数排序类似的步骤,数据分桶再收集即可。

测试

100万0~99的数据,bucketSize = 2:

100万0~99的数据,bucketSize = 5:

100万0~99的数据,bucketSize = 1:

5.3 基数排序

基数排序是对计数排序的一个升级方法。只要我们==把数组中的数从低位到高位逐次进行只看某一位的计数排序,最终就能得到有序的数组。==这可能有些难以理解,但是我们可以看一个例子:

数组=[170,45,75,90,802,24,2,66]

我们将按照十进制的个位、十位、百位等进行排序。这里最大的数字是802,有三位数字,所以我们将进行三轮排序。

第一轮:按个位排序

  • 170的个位是0
  • 45的个位是5
  • 75的个位是5
  • 90的个位是0
  • 802的个位是2
  • 24的个位是4
  • 2的个位是2
  • 66的个位是6

按个位排序的结果为:170,90,802,2,24,45,75,66170,90,802,2,24,45,75,66

第二轮:按十位排序

  • 170的十位是7
  • 90的十位是9
  • 802的十位是0
  • 2的十位是0(没有十位,视为0)
  • 24的十位是2
  • 45的十位是4
  • 75的十位是7
  • 66的十位是6

按十位排序的结果为:802,2,24,45,66,170,75,90802,2,24,45,66,170,75,90

第三轮:按百位排序

  • 802的百位是8
  • 2的百位是0(没有百位,视为0)
  • 24的百位是0
  • 45的百位是0
  • 66的百位是0
  • 170的百位是1
  • 75的百位是0
  • 90的百位是0

按百位排序的结果为:2,24,45,66,75,90,170,8022,24,45,66,75,90,170,802

最终排序结果为:2,24,45,66,75,90,170,8022,24,45,66,75,90,170,802

时间复杂度

基数排序的时间复杂度仅为 O ( k ×   N ) O(k\times\,N) O(k×N),非常高效。

实现
void RadixSort(int* arr, int n)
{
	int max = arr[0];
	for (int i = 1; i < n; ++i)
	{
		if (arr[i] > max)
		{
			max = arr[i];
		}
	}
	int maxDigit = 0;
	while (max)
	{
		max /= 10;
		++maxDigit;
	}
	int* count = (int*)malloc(sizeof(int) * 10);
	int* bucket = (int*)malloc(sizeof(int) * n);
	int radix = 1;
	for (int i = 0; i < maxDigit; ++i)	//@
	{
		memset(count, 0, sizeof(int) * 10);
		for (int j = 0; j < n; ++j)
		{
			count[(arr[j] / radix) % 10]++;
		}
		for (int j = 1; j < 10; ++j)
		{
			count[j] += count[j - 1];
		}
		for (int j = n - 1; j >= 0; --j)
		{
			bucket[--count[(arr[j] / radix) % 10]] = arr[j];
		}
		memcpy(arr, bucket, sizeof(int) * n);
		radix *= 10;
	}
	free(count);
	count = NULL;
	free(bucket);
	bucket = NULL;
}

对于上方@标记的循环体中的3个子循环,这里需要给出一些解锁:

  1. 第一个for循环

    循环遍历整个数组,计算当前位的数字(个位、十位、百位等),并对应的增加 count 数组中对应索引的值。这里 a r r [ j ] / r a d i x %   10 arr[j]/radix\%\,10 arr[j]/radix%10 计算出当前位的值(如个位、十位等),count 数组用来记录每个数字(0-9)在当前位出现的次数。

  2. 第二个for循环

    通过累加前一个索引的 count 值,将 count 数组转化为前缀和数组。这一步是为了在下一个循环中能够直接定位每个元素在 bucket 中的存放位置。每个元素的存放位置取决于它当前位的值,并使用前缀和确定其在 bucket 中的结束位置。

  3. 第三个for循环

    从数组的最后一个元素开始向前遍历,这样可以保持排序的稳定性(即相同值的元素保持原有顺序)。通过查找当前位的数字对应的 count 数组值,确定元素在 bucket 中的位置(使用--count是为了下次遇到同样的数时位置向前移动一个单位),然后将元素放在 bucket 中相应的位置。

测试

下面是对一千万个随机数据的排序测试(数据在0到32767):

下面是对一千万个随机数据的排序测试(数据在0到十亿):

局限性

可以看到,基数排序一定程度上减除了计数排序对大范围数据处理的劣势,但是也增加了空间复杂度。与此同时,基数排序依旧保留了计数排序只能处理整数的缺点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/560258.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微服务使用SockJs+Stomp实现Websocket 前后端实例 | Vuex形式断开重连、跨域等等问题踩坑(一)

大家好&#xff0c;我是程序员大猩猩。 之前几篇文章&#xff0c;我们讲了Spring Cloud Gateway的轻量级实现&#xff0c;Nginx的配置概念与实现&#xff0c;如以下往期文章。 轻量级的Spring Cloud Gateway实践&#xff0c;实现api和websocket转发轻松实现Nginx的HTTP与WebS…

新产品成功的七大关键要素:理论解析与案例探讨

在激烈的市场竞争中&#xff0c;新产品的成功推出不仅关乎企业的生死存亡&#xff0c;更是企业持续发展的核心动力。那么&#xff0c;新产品如何能够脱颖而出&#xff0c;赢得市场的青睐呢&#xff1f;本文将深入探讨新产品成功的七大关键要素&#xff0c;并结合实际案例进行解…

中颖51芯片学习8. ADC模数转换

中颖51芯片学习8. ADC模数转换 一、ADC工作原理简介1. 概念2. ADC实现方式3. 基准电压 二、中颖芯片ADC功能介绍1. 中颖芯片ADC特性2. ADC触发源&#xff08;1&#xff09;**软件触发**&#xff08;2&#xff09;**TIMER4定时器触发**&#xff08;3&#xff09;**外部中断2触发…

洛谷P1057 [NOIP2008 普及组] 传球游戏

#include<iostream> using namespace std; int n;// n个人传球游戏 默认开始球在编号为1的位置 int m;// 传递m次球 int main(){cin>>n>>m;// 动态转方程&#xff1a;// 球传递到编号为k人的手中// 种类总数 传递到k-1编号种类总数 传递到k1编号种类总数//…

如何查看微信公众号发布文章的主图,如何看微信文章的主图,怎么才能拿到主图

如何查看&#xff0c;微信公众号发布文章的主图&#xff0c;如何看微信文章的主图 起因是这样的&#xff0c;当我看到一篇文章的时候&#xff0c;他的主图很漂亮&#xff0c;但是&#xff0c;正文里没有&#xff0c;而我又想看到&#xff0c;并且使用这张图片&#xff0c;该怎么…

代码随想录训练营Day 27|Python|Leetcode|122.买卖股票的最佳时机II ● 55. 跳跃游戏 ● 45.跳跃游戏II

122.买卖股票的最佳时机II 给你一个整数数组 prices &#xff0c;其中 prices[i] 表示某支股票第 i 天的价格。 在每一天&#xff0c;你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买&#xff0c;然后在 同一天 出售。 返回 你能获…

同旺科技 USB TO SPI / I2C适配器读写24LC256--页写

所需设备&#xff1a; 1、USB 转 SPI I2C 适配器&#xff1b;内附链接 2、24LC256芯片 适应于同旺科技 USB TO SPI / I2C适配器升级版、专业版&#xff1b; 从00地址开始写入64个字节&#xff0c;然后再将64个字节读回&#xff1b; 页写时序&#xff1a; 读时序&#xff1a…

easyx库的介绍

前言 如果想要摆脱黑窗口的限制那么easyx图形库是一个好的选择 easyx的初认识 easyx是针对c的图形库&#xff0c;可以帮助c/c上手图形和游戏编程 所以要用easyx必须要用.cpp的后缀 1 easyx的原理 window的图形编程&#xff0c;最终都由window的底层API来实现 2 easyx的颜色 …

【Java笔记】第4章:深入学习循环结构

前言1. 循环的理解2. while循环3. do...while循环4. for循环5. 循环的控制语句6. 循环的嵌套结语 ↓ 上期回顾: 【Java笔记】第3章&#xff1a;深入学习分支结构 个人主页&#xff1a;C_GUIQU 归属专栏&#xff1a;【Java学习】 ↑ 前言 各位小伙伴大家好&#xff01;上期小编…

Mac下删除旧版本.net sdk

参照微软官网给的方法,Releases dotnet/cli-lab (github.com) 好像不能直接的解决问题,我做一下补充,希望对需要删除旧版本sdk的小伙伴们有所帮助 1:下载工具包 Releases dotnet/cli-lab (github.com) 2:打开终端,cd切换到该文件的制定目录 3:然后按照提示一步步执行…

2024上海国际半导体制造设备材料与核心部件展览会

2024上海国际半导体制造设备材料与核心部件展览会 2024 Shanghai International Semiconductor Manufacturing Equipment Materials and Core Components Exhibition 时间&#xff1a;2024年11月18日-20日 地点&#xff1a;上海新国际博览中心 详询主办方陆先生 I38&#…

【干货精品分享】Elasticsearch 6.7 Should 子语句的失效

在ES 使用多条件 查询&#xff0c;并且是多个条件只需要满足部分条件的时候&#xff0c;我们通常会使用到ES的should查询 GET /trademark_query_index/_search {"query":{"bool" : {"must":[{"match" : {"origin": {"…

PACS系统源码 新一代的医学图像管理系统 pacs 云影像,PACS云胶片,PACS影像工作站系统源码

PACS系统源码 新一代的医学图像管理系统 pacs 云影像,PACS云胶片,PACS影像工作站系统源码 三甲医院医学影像PACS系统源码&#xff0c;集成三维影像后处理功能&#xff0c;包括三维多平面重建、三维容积重建、三维表面重建、三维虚拟内窥镜、最大/小密度投影、心脏动脉钙化分…

SynchronousQueue

SynchronousQueue 解释&#xff1a; 同步队列 介绍 实现了BlockingQueue 和 Queue 其中每个插入操作必须等待另一个线程相应的删除操作 同步队列没有任何容量&#xff0c;甚至没有一个容量 如果你想放入一个元素&#xff0c;就必须有另外一个线程尝试从中移除元素 使用 …

软件行业中的蓝海领域有哪些?

什么是蓝海&#xff1f; 蓝海&#xff0c;指的是未知的市场空间。这个概念相对于“红海”而言&#xff0c;红海则是指已知的市场空间。 企业要启动和保持获利性增长&#xff0c;就必须超越产业竞争&#xff0c;开创全新市场&#xff0c;这其中包括两块&#xff1a;一块是突破…

Shader 渐变屏幕

渐变 前置工作&#xff0c;创建缓冲&#xff0c;对顶点着色器传递顶点数据 function main() {var canvas document.getElementById(webgl);var gl getWebGLContext(canvas);if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) returnvar n initVertexBuffers(gl); }fu…

多个路由器连接的PC端进行ping通信需要做的事

实验环境&#xff1a; 三台PC三台路由器&#xff0c;并且配置好IP 拓扑图&#xff1a; 需求描述&#xff1a; 在PC0进行与PC2的ping通信&#xff1a; 需求步骤&#xff1a; 1.1首先配置ip&#xff08;略过&#xff09; 1.2我们首先查看在只配置了IP的情况下&#xff0c;P…

小程序如何优化搜索排名,获取曝光

在移动互联网时代&#xff0c;小程序以其便捷、轻量级的特点&#xff0c;逐渐成为用户获取服务的重要渠道。然而&#xff0c;小程序数量众多&#xff0c;如何让自己的小程序在搜索中脱颖而出&#xff0c;获取更多的曝光和流量&#xff0c;成为众多开发者关注的焦点。 一、理解…

javascript遍历多层级数据

javascript遍历多层级数据 代码 // data:需要处理的数据 level:用于标记数据所在层级(从1开始) const dataLoop(data, level 1)>{return data.map(item>{let r {...item, level}console.log(item, item)// 判断如果有下级&#xff0c;就传入children继续向下循环if(r…

Vuex 的原理

Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。每一个 Vuex 应用的核心就是 store&#xff08;仓库&#xff09;。“store” 基本上就是一个容器&#xff0c;它包含着你的应用中大部分的状态 ( state )。 Vuex 的状态存储是响应式的。当 Vue 组件从 store 中读取状态的…