【数学建模】最优旅游城市的选择问题:层次分析模型(含MATLAB代码)

层次分析法(The analytic hierarachy process,简称AHP)是一种常用的决策分析方法,其基本思路是将复杂问题分解为多个组成部分,然后对这些部分进行逐一评估和比较,最后得出最优解决方案。(例如:选择哪种方案最好、哪位运动员或员工表现得更优秀)

要解决评价类问题,要解决以下三个问题:

1、我们评价的目标是什么?

2、我们为了达到这个目标有哪几种可选方案?

3、评价的准则或者说指标是什么?

一般来说,前两个问题的答案是显而易见的,第三个问题的答案需要我们根据题目中的背景材料、常识或者网上搜集到的参考资料进行结合,从中筛选最合适的指标。

案例:请选择合适的指标,为小明选取一个最适合他的城市。

本题需要我们选择最优的旅游城市,首先上网搜索几个比较重要的指标:景点景色、旅游花费、居住环境、饮食情况、交通便利程度。选取想去的城市分别为:苏州、威海、桂林。我们先来绘制一张权重表。

指标权重

苏州

威海

桂林

景色

花费

居住

饮食

交通

现在的关键就是求出这张权重表。

确定影响某因素的诸因子在该因素中所占的比重时,遇到的主要困难是这些比重常常不易定量化。此外,当影响某因素的因子较多时,直接考虑各因子对该因素有多大程度的影响时,常常会因考虑不周全、顾此失彼而使决策者提出与他实际认为的重要性程度不相一致的数据,甚至有可能提出一组隐含矛盾的数据。

--选自司守奎[kuil老师的《数学建模算法与应用教材》 

一次性去考虑五个指标的关系,往往考虑不周;而两个两个指标进行比较,最终根据两两比较的结果来推算出权重。

标度

含义

1

表示两个因素相比,具有相同重要性

3

表示两个因素相比,一个因素比另一个因素稍微重要

5

表示两个因素相比,一个因素比另一个因素明显重要

7

表示两个因素相比,一个因素比另一个因素强烈重要

9

表示两个因素相比,一个因素另一个因素极端重要

2,4,6,8

上述两相邻判断的中值

倒数

A和B相比如果标度3,那么B和A相比就是1/3

 重要性可以理解为满意程度

景色

花费

居住

饮食

交通

景色

1

1/2

4

3

3

花费

2

1

7

5

5

居住

1/4

1/7

1

1/2

1/3

饮食

1/3

1/5

2

1

1

交通

1/3

1/5

3

1

1

我们知道景色与景色属于同一元素,满意程度为1,其他亦是如此(根据自己对这几个指标的判断确定权重)。

总结:上面这个表是一个5*5的方阵,我们记为A,对应的元素为aij,这个方针有如下特征:

(1)aij表示的意义是,与指标j相比,i的重要程度。

(2)当i=j时,两个指标相同,因此同等重要记为1,这就解释了主对角元素为1.

(3)aij>0且满足aij*aji=1(我们称满足这一条件的矩阵为正互反矩阵)

实际上,上面这个矩阵就是层次分析法中的判断矩阵。

接下来我们则需要填写5个判断矩阵(我们可以通过与小明一问一答的形式,来填写,当然在论文中我们直接给出即可)

景色苏州威海桂林
苏州125
威海1/212
桂林1/51/21
花费苏州威海桂林
苏州11/31/8
威海311/3
桂林831
居住苏州威海桂林
苏州113
威海113
桂林1/31/31
饮食苏州威海桂林
苏州134
威海1/311
桂林1/411
交通苏州威海桂林
苏州111/4
威海111/4
桂林441

需要注意的是:在这里我们应该把表格里的数字理解为可接受度(即满意程度)。

我们在书写时也有可能会有bug。比如说:苏州=A  威海=B 桂林=C 苏州比威海景色好则A>B 苏州和桂林景色一样好则A=C 威海比桂林景色号则B>C如此便出现了矛盾

什么是一致矩阵呢? 

景色苏州威海桂林
苏州124
威海1/212
桂林1/41/21

5fe82a2747ca4a51884965fc878e4aa4.png

也就说只要各行各列满足成倍数的关系即为一致矩阵

一致矩阵:若矩阵中每个元素 aij>0且满足 aij*aji=1,则我们称该矩阵为正互反矩阵。在层次分析法中,我们构造的判断矩阵均是正互反矩阵。若正互反矩阵满足aij*ajk=aik,则我们称其为一致矩阵。

注意:在使用判断矩阵求权重之前,必须对其进行一致性检验。

8b77f42cc8794f0f8673b396b2715ab3.jpeg

引理:n阶正互反矩阵A为一致矩阵时当且仅当最大特征值eq?ℷmax=n且当正互反矩阵A非一致时,一定满足eq?ℷmax>n.

景色苏州威海桂林
苏州12a
威海1/212
桂林1/a1/21

 cc4a78b2ab104e65867ad9d1df58689f.jpeg

判断矩阵越不一致,最大特征值与n就相差越大

第一步:计算一致性指标

93845d12949a46db8c1ecaf1426483b2.png

第二步:查找对应的平均随机一致性指标RI 

n123456789101112131415
RI000.520.891.121.261.361.411.461.491.521.541.561.581.59

注:在实际运用中,n很少超过10,如果指标的个数大于10,可以考虑建立二级指标体系

第三步:计算一致性比例CR

ba7c709508a34e4bb7adb11e4b6c9c70.png

如果CR<0.1,则可认为判断矩阵的一致性可以接受;否则需对判断矩阵进行修正。

求指标权重及城市在各个指标上的得分

1、算数平均法

先对景色指标进行对第一列归一化处理,得出权重

苏州=1/(1+0.5+0.2)=0.5882

威海=0.5/(1+0.5+0.2)=0.2941

桂林=0.2/(1+0.5+0.2)=0.1177 

 使用第二列的数据,计算出来的权重

苏州=2/(2+1+0.5)=0.5714

威海=1/(2+1+0.5)=0.2857

桂林=0.5/(2+1+0.5)=0.1429

使用第三列数据,计算出来的权重

苏州=5/(5+2+1)=0.625

威海=2/(5+2+1)=0.25

桂林=1/(5+2+1)=0.125

综合上述三列,算术平均求权重:

苏州=(0.5882+0.5714+0.625)/3=0.5949

威海=(0.2941+0.2857+0.25)/3=0.2766

桂林=(0.1177+0.1429+0.125)/3=0.1285

基本步骤:将判断矩阵按照列归一化,将归一化的各列相加,最后将相加后得到的向量中每个元素除以n即可得到权重向量

fb84b3add72641a38eade44b4c75b273.jpeg

2、几何平均法

第一步:将A的元素按照行相乘得到一个新的列向量

第二步:将新的向量的每个分量开n次方

第三步:对该列向量进行归一化即可得到权重向量

6d20981f68824ba0ad183b07b23dac22.jpeg

算数平均法权重几何平均法权重
苏州0.59490.5954
威海0.27660.2764
桂林0.12850.1283

注意:权重和应为1,这里由于四舍五入所以会有可以忽略的差距。

3、特征值法求权重

89d266c09e564c9d9b5c722ce02125b8.jpeg

假若我们的判断矩阵一致性可以接受,那么我们可以仿照一致矩阵求权重的方法。

第一步:求出矩阵A的最大特征值以及其对应的特征向量

第二步:对求出的特征向量进行归一化即可得到我们的权重

景色苏州威海桂林
苏州125
威海1/212
桂林1/51/21

 最大特征值为3.0055,一致性比例CR=0.0053对应的特征向量:[-0.8902,-0.4132,-0.1918]对其归一化:[0.5954,0.2764,0.1283]

算术平均法几何平均法特征值法
苏州0.59490.59540.5954
威海0.27660.27640.2764
桂林0.12850.12830.1283

以特征值法为例(我们可以借助MATLAB来求权重,下面我们会介绍到):

指标权重苏州威海桂林
景色0.26360.59540.27640.1283
花费0.47580.08190.23630.6817
居住0.05380.42860.42860.1429
饮食0.09810.63370.19190.1744
交通0.10870.16670.16670.6667

此时我们便可以求出每一个城市的得分情况:

苏州=0.5954*0.2636+0.0819*0.4758+0.4286*0.0538+0.6337*0.0981+0.1667*0.1087=0.299

同理我们也可以得出剩下两个城市的得分情况为威海0.245,桂林0.455

因此我们就可以认为最佳旅游城市是桂林(可以用EXCELL简化运算)

e67c56eae97d4b0fa543ef0475508f8b.png

以往的论文利用层次分析法解决实际问题时,都是采用其中某一种方法求权重,而不同的计算方法可能会导致结果有所偏差。为了保证结果的稳健性本文采用了三种方法分别求出了权重,再根据得到的权重矩阵计算各个方案的得分,并进行排序和综合分析,这样避免了采用单一方法所产生的偏差,得出的结论将更全面、更有效。

层次分析法的局限性:

(1)评价的决策层不能太多,太多的话n会很大,判断矩阵和一致矩阵差异可能会很大。(一般n最多不能超过15)

(2)如果决策层中的指标的数据是已知的,应该如何利用数据使得评价更准确?

因此层次分析法存在很大局限性。

下面我们来看代码部分内容:

disp('请输入判断矩阵A')
A=input('A=');
[n,n] = size(A);
% % % % % % % % % % % % %方法1: 算术平均法求权重% % % % % % % % % % % % %
Sum_A = sum(A);
SUM_A = repmat(Sum_A,n,1);
Stand_A = A ./ SUM_A;

disp('算术平均法求权重的结果为:');
disp(sum(Stand_A,2)./n)
% % % % % % % % % % % % %方法2: 几何平均法求权重% % % % % % % % % % % % %
Prduct_A = prod(A,2);
Prduct_n_A = Prduct_A .^ (1/n);
disp('几何平均法求权重的结果为:');
disp(Prduct_n_A ./ sum(Prduct_n_A))
% % % % % % % % % % % % %方法3: 特征值法求权重% % % % % % % % % % % % %
[V,D] = eig(A);
Max_eig = max(max(D));
[r,c]=find(D == Max_eig , 1);
disp('特征值法求权重的结果为:');
disp( V(:,c) ./ sum(V(:,c)) )
% % % % % % % % % % % % %下面是计算一致性比例CR的环节% % % % % % % % % % % % %
CI = (Max_eig - n) / (n-1);
RI=[0 0.0001 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];  %注意哦,这里的RI最多支持 n = 15
% 这里n=2时,一定是一致矩阵,所以CI = 0,我们为了避免分母为0,将这里的第二个元素改为了很接近0的正数
CR=CI/RI(n);
disp('一致性指标CI=');disp(CI);
disp('一致性比例CR=');disp(CR);
if CR<0.10
    disp('因为CR<0.10,所以该判断矩阵A的一致性可以接受!');
else
    disp('注意:CR >= 0.10,因此该判断矩阵A需要进行修改!');
end

层次分析法在实际应用中有局限性,比如判断矩阵的主观性较强,可能导致结果的不稳定性。因此,在使用层次分析法时,应尽可能确保判断矩阵的客观性和准确性,并结合实际情况进行考虑。

本次分析就到这里,欢迎大家在评论区补充更正,相信大家一定会有所收获。感谢大家的关注及观看! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/557659.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux 5.10 Pstore 学习之(二) 原理学习

目录 编译框架模块初始化pstore子系统ramoops模块初始化实例化注册回调数据结构 pstore_blk模块pstore_zone模块 测试扩展调试 编译框架 目标结构 linux_5.10/fs/pstore/ ├── blk.c ├── ftrace.c ├── inode.c // 核心1 ├── internal.h ├── Kconfig ├── …

Vitis HLS 学习笔记--scal 函数-探究

目录 1. Vitis HLS重器-Vitis_Libraries 2. 初识scal() 3. 函数具体实现 3.1 变量命名规则 3.2 t_ParEntries解释 3.3 流类型详解 3.4 双重循环 4. 总结 1. Vitis HLS重器-Vitis_Libraries 在深入探索Vitis HLS&#xff08;High-Level Synthesis&#xff09;的旅程中&…

了解 containerd 中的 snapshotter,先从 native 开始

本文内容节选自 《containerd 原理剖析与实战》&#xff0c;本书正参加限时优惠内购&#xff0c;点击阅读原文&#xff0c;限时 69.9 元购买。 上一篇文章《一文了解 containerd 中的 snapshot》中&#xff0c;介绍了containerd 的 snapshot 机制&#xff0c;了解到 containerd…

64B/66B编码 自定义PHY层设计

一、前言 之前的一篇文章讲解了64B/66B的基本原理&#xff0c;本篇在基于64B/66B GT Transceiver的基础之上设计自定义PHY。基本框图如下。 二、GT Mdule GT Module就按照4个GT CHannel共享一个GT COMMON进行设置&#xff0c;如下图。要将例子工程中的GT COMMON取出&#xff…

3.4 海思SS928开发 - 烧写工具 - BurnTool Emmc 烧写

3.4 烧写工具 - BurnTool Emmc 烧写 BurnTool 工具提供了多种烧写方式&#xff0c;这里只介绍最常用的 烧写emmc方式。 环境准备 PC 与单板之间连接好调试串口以及网线。 将厂商提供的出厂镜像拷贝至 PC 硬盘上&#xff0c;解压后得到的文件如下&#xff1a; . ├── boot_…

解决Ubuntu安装NVIDIA显卡驱动导致的黑屏问题

前言 本文是在经历了3天内5次重装Ubuntu系统后写下的&#xff0c;根本原因就是这篇文章的主题——安装NVIDIA显卡驱动&#xff01;写下本文是为了让自己今后不再出同样类型的错误&#xff0c;同时&#xff0c;给其他出现同样问题的人一些启发&#xff01; 本文实例的电脑配置如…

WEB前端-笔记(二)

一、事件 1.1类型 focus 获取焦点事件 ipt.addEventListener("focus", () > {.log("") }) blue 失去焦点事件 ipt.addEventListener("blur", () > {console.log("") }) inout 文本输入事件 txt.addEventListener("i…

实在智能协办2024中国核能行业RPA数字员工专项培训会

2024年中国核能行业RPA数字员工专项培训会于4月16日-19日在杭州举办&#xff0c;由中国核能行业协会信息化专业委员会主办、实在智能承办。本次培训由理论讲解、技术深化和实际操作三部分组成&#xff0c;旨在帮助核能行业从业人员学习与掌握基于大模型的RPA技术应用&#xff0…

NVIDIA NCCL 源码学习(十四)- NVLink SHARP

背景 上节我们介绍了IB SHARP的工作原理&#xff0c;进一步的&#xff0c;英伟达在Hopper架构机器中引入了第三代NVSwitch&#xff0c;就像机间IB SHARP一样&#xff0c;机内可以通过NVSwitch执行NVLink SHARP&#xff0c;简称nvls&#xff0c;这节我们会介绍下NVLink SHARP如…

使用 Meta Llama 3 构建人工智能的未来

使用 Meta Llama 3 构建人工智能的未来 现在提供 8B 和 70B 预训练和指令调整版本,以支持广泛的应用 使用 Meta AI 体验 Llama 3 我们已将 Llama 3 集成到我们的智能助手 Meta AI 中,它扩展了人们完成工作、创造和与 Meta AI 联系的方式。通过使用 Meta AI 进行编码任务和解…

从零到一品牌电商私域流量代运营规划方案

【干货资料持续更新&#xff0c;以防走丢】 从零到一品牌电商私域流量代运营规划方案 部分资料预览 资料部分是网络整理&#xff0c;仅供学习参考。 PPT共50页&#xff08;完整资料包含以下内容&#xff09; 目录 私域运营方案&#xff1a; 一、项目背景与目标 - 开创数智化…

华为路由器基于接口限速

一、背景 ISP与企业内网通过华为路由器接入Internet时,当大量流量进入路由器时,可能会因为带宽不足产生拥塞,导致丢包,严重影响用户上网体验。对于此需要对网络流量进行限制,其方式通常有防火墙带宽策略、路由器基于接口限速等。 二、华为路由器基于接口限速方式 在路由…

Docker 部署 MongoDB 数据库

文章目录 官网地址docker 网络mongod.conf部署 MongoDB部署 mongo-expressdocker-compose.ymlMongoDB shell 官网地址 https://www.mongodb.com/zh-cn docker 网络 # 创建 mongo_network 网络 docker network create mongo_network # 查看网络 docker network list # 容器连…

RT-Thread在Win10下编译出现 unsupported pickle protocol: 5解决方案

调试背景&#xff1a; 在WIN10下编译RT-Thread源码&#xff1a;对象处理器平台是Microchip SAMA5D27-SOM1-EK评估板。 unsupported pickle protocol: 5 编译出现报错:ValueError : unsupported pickle protocol: 5 $ scons scons: Reading SConscript files ... Newlib ver…

MySQL:执行一条查询语句期间发生了什么?

MySQL的架构分为两层&#xff0c;Server 层和存储引擎层 server层负责建立连接、分析和执行SQL&#xff0c;MySQL&#xff0c;MySQL大多数的核心功能模块都在在这里实现&#xff0c;下图上半部分都是server层做的事情&#xff0c;另外&#xff0c;所有的内置函数&#xff08;如…

在mini2440上编写linux应用程序、字符设备驱动程序的编写与编译

在mini2440上编写linux应用程序 结合前两篇的学习&#xff0c;一个linux操作系统已经在mini2440上运行起来了&#xff0c;结合交叉编译环境和nfs等工具&#xff0c;我们可以在mini2440上编写任何我们在linux系统编程中学到的应用程序。一个简要的多文件Makefile文件如下&#…

设计模式——2_9 模版方法(Template Method)

人们往往把任性也叫做自由&#xff0c;但是任性只是非理性的自由&#xff0c;人性的选择和自决都不是出于意志的理性&#xff0c;而是出于偶然的动机以及这种动机对感性外在世界的依赖 ——黑格尔 文章目录 定义图纸一个例子&#xff1a;从文件中获取信息分几步&#xff1f;Rea…

基于Spingboot+vue协同过滤音乐推荐管理系统

项目演示视频效果&#xff1a; 基于Spingbootvue协同过滤音乐推荐管理系统 基于Spingbootvue协同过滤音乐推荐管理系统 1、项目介绍 基于Springboot的音乐播放管理系统总共两个角色&#xff0c;用户和管理员。用户使用前端前台界面&#xff0c;管理员使用前端后台界面。 有推荐…

Golang内存、指针逃逸、垃圾回收机制概览

最近看到了一篇文章是关于go的内存、指针逃逸和垃圾回收机制的&#xff0c;发现自己并未很细致的了解过这方面的内容&#xff0c;于是在翻阅各种文章的情况下&#xff0c;写出了这篇总结&#xff0c;参考文章放在文末&#xff0c;可自取 内存 Go 语言使用一个自带的垃圾收集器…

【S32K3 入门系列】- ADC 模块简介(上)

一、 前言 对于 S32K3 系列的初学者来说&#xff0c;S32K3 系列的参考手册阅读难度是让人望而却步的&#xff0c;本系列将对 S32K3 系列的外设进行逐一介绍&#xff0c;对参考手册一些要点进行解析。本文旨在介绍 S32K3 系列的 ADC 模块&#xff0c; ADC&#xff08;Analog to…