【代码随想录】【动态规划】day48:打家劫舍

打家劫舍1

在这里插入图片描述

def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        # 分为两个情况,偷还是不偷,
        # dp[i]为考虑到第i个房间时的最大值
        
        if len(nums) == 0:  # 如果没有房屋,返回0
            return 0
        if len(nums) == 1:  # 如果只有一个房屋,返回其金额
            return nums[0]

        # 创建一个动态规划数组,用于存储最大金额
        dp = [0] * len(nums)
        dp[0] = nums[0]  # 将dp的第一个元素设置为第一个房屋的金额
        dp[1] = max(nums[0], nums[1])  # 将dp的第二个元素设置为第一二个房屋中的金额较大者

        # 遍历剩余的房屋
        for i in range(2, len(nums)):
            # 对于每个房屋,选择抢劫当前房屋和抢劫前一个房屋的最大金额
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])

        return dp[-1]  # 返回最后一个房屋中可抢劫的最大金额

打家劫舍2

成环的情况

def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums)<=3:
            return max(nums)

        # 有不考虑第一间房子和最后一间房子 这样的两种情况
        if len(nums)>3:
            dp=[0]*len(nums)
            dp2=[0]*len(nums)
            # 初始化
            # 考虑第一种情况
            dp[0]=nums[0]
            dp[1]=max(nums[1],nums[0])

            # 考虑第二种情况
            dp2[1]=nums[1]
            dp2[2]=max(nums[1],nums[2])
            
            for i in range(2,len(nums)-1):
                dp[i]=max(nums[i]+dp[i-2],dp[i-1])
                print(dp[i])

            for j in range(3,len(nums)):
                dp2[j]=max(nums[j]+dp2[j-2],dp2[j-1])
                print(dp2[j])

            return max(dp[-2],dp2[-1])

打家劫舍3

在这里插入图片描述

def rob(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        # 树形dp,dp数组就是一个状态转移的列表
        # dp数组(dp table)以及下标的含义:
        # 1. 下标为 0 记录 **不偷该节点** 所得到的的最大金钱
        # 2. 下标为 1 记录 **偷该节点** 所得到的的最大金钱
        dp = self.traversal(root)
        return max(dp)


    # 要用后序遍历, 因为要通过递归函数的返回值来做下一步计算
    def traversal(self, node):
        
        # 递归终止条件,就是遇到了空节点,那肯定是不偷的
        if not node:
            return (0, 0)

        left = self.traversal(node.left)
        right = self.traversal(node.right)

        # 不偷当前节点, 偷子节点
        val_0 = max(left[0], left[1]) + max(right[0], right[1])

        # 偷当前节点, 不偷子节点
        val_1 = node.val + left[0] + right[0]

        
        return [val_0,val_1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/555981.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

QoS流量整形

流量整形是一种带宽技术形式&#xff0c;它延迟某些类型的网络数据包的流动&#xff0c;以确保更高优先级应用程序的网络性能&#xff0c;它主要涉及调整数据传输速率&#xff0c;以确保网络资源以最佳容量得到利用。流量整形的目的是防止网络拥塞并提高网络的整体性能&#xf…

穿越物联网的迷雾:深入理解MQTT协议

目录标题 1、MQTT简介核心特性 2、MQTT的工作原理通信过程 3、MQTT的消息质量&#xff08;QoS&#xff09;4、安全机制5、实践应用环境准备示例项目发布者客户端订阅者客户端 6、最佳实践7、结论8、参考资料 在物联网&#xff08;IoT&#xff09;的海洋中&#xff0c;数据像水流…

【深度学习】Attention、Self-Attention、Multi-Head Attention

一、Attention 在CV领域&#xff0c;注意力机制通常分为通道注意力和空间注意力或者两者结合。 一张图像经backbone得到的特征通常包括多个通道&#xff0c;每个通道是一个像素矩阵&#xff0c;每个通道对任务的贡献不尽相同&#xff0c;单个通道的特征图中每个像素对任务的贡…

Ansible在macOS上的安装部署

一、安装 Ansible&#xff08;使用 Homebrew&#xff09; 安装 Homebrew&#xff08;如果尚未安装&#xff09;&#xff1a; /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"使用 Homebrew 安装 Ansible&#x…

Hive进阶(1)----HDFS写入数据流程(赋图助君理解)

HDFS写入数据流程 1.理论流程描述 HDFS&#xff08;Hadoop分布式文件系统&#xff09;的数据写入流程是一个复杂但高效的过程&#xff0c;可以分为以下8个步骤&#xff1a; 1、client(客户端)发起文件上传请求&#xff1b; 2、通过发送RPC请求与NameNode建立通讯。NameNode…

从100美元到1亿美元,探究传奇交易员GCR的交易心得及其持仓

有史以来最“伟大”的交易员GCR终于回归。2022年&#xff0c;GCR的资金从100美元涨至1亿美元&#xff0c;通过做空LUNA成为有史以来最赚钱的交易员。 GCR又名Giant Cassock Revival&#xff0c;或许是从FTX和Luna崩盘事件中获利最多的人&#xff0c;其净资产达到1亿美元后便“…

lv_micropython for ESP32/S2/S3/C3

由于官方的lv_micropython编译ESP32S3/S2/C3会报错&#xff0c;因为这些芯片的esp-idf底层重写了接口&#xff0c;参照网友提供的方法修改lv_bindings/driver/esp32里的文件&#xff0c;解决编译错误。 问题列举&#xff1a;Issues lvgl/lv_binding_micropython GitHub 一…

视觉信息保真度VIF算法详细介绍

来源 算法核心思想来源该篇论文A VISUAL INFORMATION FIDELITY APPROACH TO VIDEO QUALITY ASSESSMENT;是2005年的一篇高引用文章; 是一种全参考的视频图像评价算法;在奈飞开源的视频质量评价工具vmaf中将其作为一个判断维度,具体关于vmaf介绍可以参考视频质量评价工具vmaf…

安全开发实战(2)---域名反查IP

目录 安全开发专栏 前言 域名与ip的关系 域名反查ip的作用 1.2.1 One 1.2.2 Two 1.2.3 批量监测 ​总结 安全开发专栏 安全开发实战http://t.csdnimg.cn/25N7H 这步是比较关键的一步,一般进行cdn监测后,获取到真实ip地址后,或是域名时,然后进行域名反查IP地址,进行进…

机器学习笔记 - 使用 OpenCV 的结构化森林进行边缘检测

一、简述 边缘检测是计算机视觉领域中一项非常重要的任务。这是许多纯计算机视觉任务(例如轮廓检测)的第一步。即使涉及深度学习,较深层也首先学习识别边缘,然后再学习图像的复杂特征。所以,我们可以说边缘检测在计算机视觉领域非常重要。拥有良好且高效的图像边缘检测算法…

微信小程序实现美食检索功能

1、打开浏览器搜索&#xff1a;腾讯位置服务 2、注册一个账号&#xff0c;有账号的直接登陆就行 3、注册登陆成功后&#xff0c;点击控制台 4、进入控制台后点击我的应用——>创建应用 5、添加key,注意看注释 6、key添加成功后&#xff0c;开始分配额度&#xff08;配额&…

复合机器人在磁钢上下料中的应用及其优势分析

复合机器人是一种集成了移动机器人和工业机器人功能的设备&#xff0c;其独特之处在于拥有“手、脚、眼、脑”的综合能力&#xff0c;从而实现了更高的灵活性和操作效率。在磁钢上下料的应用场景中&#xff0c;复合机器人能够发挥显著的优势。 首先&#xff0c;复合机器人可以根…

【 书生·浦语大模型实战营】作业(五):LMDeploy 量化部署

【 书生浦语大模型实战营】作业&#xff08;五&#xff09;&#xff1a;LMDeploy 量化部署 &#x1f389;AI学习星球推荐&#xff1a; GoAI的学习社区 知识星球是一个致力于提供《机器学习 | 深度学习 | CV | NLP | 大模型 | 多模态 | AIGC 》各个最新AI方向综述、论文等成体系…

vscode绿绿主题setting config

下载插件Green Tree Theme 选greentree ctrl shift p找到setting {"workbench.colorTheme": "Green Tree","editor.fontSize": 16.5, // 字号"workbench.colorCustomizations": {"[Green Tree]": {"activityBarBadge.…

android远程更新下载apk

最近业务有涉及到&#xff0c;奈何是个app代码小白&#xff0c;遂记录一下 一&#xff1a;AndroidManifest.xml文件配置 application标签里面加上 android:networkSecurityConfig"xml/network_config" <!-- app下载更新配置--> <uses-permission andr…

Hugging Face 推出 Idefics2 视觉语言模型

Hugging Face 公司宣布推出 Idefics2&#xff0c;这是一个多功能模型&#xff0c;能够理解和生成基于图像和文本的文字回复。该模型为回答视觉问题、描述视觉内容、根据图像创作故事、文档信息提取&#xff0c;甚至根据视觉输入执行算术运算树立了新的标杆。 Idefics2 仅有 80…

java死锁

一、什么是死锁 锁是个非常有用的工具&#xff0c;运用场景非常多&#xff0c;因为它使用起来非常简单&#xff0c;而且易于理解。但同时它也会带来一些困扰&#xff0c;那就是可能会引起死锁&#xff0c;一旦产生死锁&#xff0c;就会造成系统功能不可用。 比如我们现在有Th…

网络防火墙技术知多少?了解如何保护您的网络安全

在当前以网络为核心的世界中&#xff0c;网络安全成为了至关重要的议题。网络防火墙是一种常见的保护网络安全的技术&#xff0c;用于监控和控制网络流量&#xff0c;阻止未经授权的访问和恶意活动。今天德迅云安全就带您了解下防火墙的一些相关功能和类型。 防火墙的五个功能…

使用clickhouse-backup迁移数据

作者&#xff1a;俊达 1 说明 上一篇文章中&#xff0c;我们介绍了clickhouse-backup工具。除了备份恢复&#xff0c;我们也可以使用该工具来迁移数据。 这篇文章中&#xff0c;我们提供一个使用clickhouse-backup做集群迁移的方案。 2 前置条件 1、源端和目标端网络联通&a…

SRIO系列-仿真测试

一、前言 前两篇已经讲述了SRIO协议的概况&#xff0c;以及xilinx SRIO IP核的使用方式&#xff0c;已经在搭建工程的过程中时钟和复位的注意事项。 二、设计框图 整个框图也是按照之前的工程进行搭建&#xff0c;首先时SRIO_Channel&#xff0c;由SRIO IP核和时钟、复位模块…