文章目录
- 1.编写计算偏斜度和峭度的函数。并用自己编写的函数计算课本23页的习题1.5数据的偏斜度和峭度。
- 2.从1.5数据中随机抽取2个容量为20的样本,分别计算它们的平均数和标准差
- 3.请绘制给定数据的频率分布直方图,计算数据的均值、标准差、偏斜度和峭度。
- 4.仿照所给图像,生成p=0.1、0.3、0.5、0.7和0.9的二项分布曲线,作在同一张图上。
1.编写计算偏斜度和峭度的函数。并用自己编写的函数计算课本23页的习题1.5数据的偏斜度和峭度。
方法一:(套公式)
import random
import numpy as np
import pandas as pd
data = pd.read_excel("E:\习题1.5数据.xlsx")
data = np.array(data)
data_var = np.var(data) # 计算方差
data_mean = np.mean(data) # 计算均值
data_skewness = np.mean((data-data_mean)**3) # 计算偏斜度
data_kurtosis = np.mean((data-data_mean)**4)/pow(data_var,2) - 3 # 计算峭度
print('偏斜度和峭度:')
print(data_skewness,data_kurtosis,sep='\n')
方式二:(直接函数调用)
import scipy.stats as stats
data_skewness = stats.skew(data)
data_kurtosis = stats.kurtosis(data)
print('偏斜度和峭度:')
print(data_skewness,data_kurtosis,sep='\n')
2.从1.5数据中随机抽取2个容量为20的样本,分别计算它们的平均数和标准差
import random
import numpy as np
import pandas as pd
data = pd.read_excel("E:\习题1.5数据.xlsx")
data = np.array(data)
# 随机抽取2个容量为20的样本
data = list(data) # 将数组转为列表
sample1 = random.sample(data,20) # 样本1
sample2 = random.sample(data,20) # 样本2
sample1_mean = np.mean(sample1) # 计算样本1的均值
sample1_std = np.std(sample1) # 计算样本1的标准差
print('样本1的均值和标准差:')
print(sample1_mean,sample1_std,sep='\n')
sample2_mean = np.mean(sample2) # 计算样本1的均值
sample2_std = np.std(sample2) # 计算样本1的标准差
print('样本2的均值和标准差:')
print(sample2_mean,sample2_std,sep='\n')
3.请绘制给定数据的频率分布直方图,计算数据的均值、标准差、偏斜度和峭度。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = 'Simhei'
plt.rcParams['axes.unicode_minus'] = False
data = pd.read_excel("E:\data.xlsx")
data = np.array(data)
# 计算数据的频率分布
counts,bins = np.histogram(data)
# 绘制直方图
plt.hist(data,bins = bins,align='left',rwidth=0.9)
plt.title('鱼类体长数据的频率分布直方图')
plt.xlabel('鱼的体长')
plt.ylabel('频率')
# 显示图形
plt.show()
data_mean = np.mean(data) # 计算均值
data_var = np.var(data) # 计算方差
data_std = np.std(data) # 计算标准差
data_skewness = np.mean((data-data_mean)**3) # 计算偏斜度
data_kurtosis = np.mean((data-data_mean)**4)/pow(data_var,2) - 3 # 计算峭度
print('均值、标准差、偏斜度、峭度分别为:')
print(data_mean,data_std,data_skewness,data_kurtosis,sep='\n')
4.仿照所给图像,生成p=0.1、0.3、0.5、0.7和0.9的二项分布曲线,作在同一张图上。
import matplotlib.pyplot as plt
from scipy.stats import binom
import numpy as np
plt.rcParams["font.sans-serif"] = 'Simhei'
plt.rcParams['axes.unicode_minus'] = False
# 指定试验次数n
n = 10
# 指定p值列表
p_values = [0.1, 0.3, 0.5, 0.7, 0.9]
# 绘图
plt.figure()
for i, p in enumerate(p_values):
# 计算二项分布的概率
y = binom.pmf(np.arange(n + 1), n, p)
# 绘制曲线
plt.plot(np.arange(n + 1), y, label=f'p={p}')
# 设置图表标题和轴标签
plt.title('二项分布曲线')
plt.xlabel('x')
plt.ylabel('概率')
plt.legend()
# 显示图表
plt.show()