计算机毕设 深度学习手势识别 - yolo python opencv cnn 机器视觉

文章目录

  • 0 前言
  • 1 课题背景
  • 2 卷积神经网络
    • 2.1卷积层
    • 2.2 池化层
    • 2.3 激活函数
    • 2.4 全连接层
    • 2.5 使用tensorflow中keras模块实现卷积神经网络
  • 3 YOLOV5
    • 3.1 网络架构图
    • 3.2 输入端
    • 3.3 基准网络
    • 3.4 Neck网络
    • 3.5 Head输出层
  • 4 数据集准备
    • 4.1 数据标注简介
    • 4.2 数据保存
  • 5 模型训练
    • 5.1 修改数据配置文件
    • 5.2 修改模型配置文件
    • 5.3 开始训练模型
  • 6 实现效果
    • 6.1图片效果
    • 6.2 视频效果,摄像头实时效果
  • 7 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 **基于深度学习加驾驶疲劳与行为检测 **

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:3分
  • 创新点:5分

在这里插入图片描述

1 课题背景

火灾事故的频发给社会造成不必要的财富损失以及人员伤亡,在当今这个社会消防也是收到越来越多的注视。火灾在发生初期是很容易控制的,因此,如何在对可能发生灾害的场所进行有效监控,使得潜在的损失危害降到最低是当前研究的重点内容。传统的探测器有较大的局限性,感温、感烟的探测器的探测灵敏度相对争分夺秒的灾情控制来说有着时间上的不足,而且户外场所的适用性大大降低。随着计算机视觉的发展,基于深度学习的图像处理技术已经愈发成熟并且广泛应用在当今社会的许多方面,其在人脸识别、安防、医疗、军事等领域已经有相当一段时间的实际应用,在其他领域也展现出跟广阔的前景。利用深度学习图像处理技术对火灾场景下火焰的特征学习、训练神经网络模型自动识别火焰,这项技术可以对具有监控摄像头场景下的火灾火焰进行自动、快速、准确识别并设置预警装置,从而在火灾发生的初期及时响应,赢得更多的时间,把损失降到最低。

2 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

2.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

2.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NsOGzsjj-1658373873444)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20220709114210181.png)]
在这里插入图片描述

2.3 激活函数

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

2.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

2.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

3 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO 一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

3.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

3.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

3.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

3.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

3.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):
        stride = None  # strides computed during build
        onnx_dynamic = False  # ONNX export parameter
    
        def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
            super().__init__()
            self.nc = nc  # number of classes
            self.no = nc + 5  # number of outputs per anchor
            self.nl = len(anchors)  # number of detection layers
            self.na = len(anchors[0]) // 2  # number of anchors
            self.grid = [torch.zeros(1)] * self.nl  # init grid
            self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
            self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
            self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
            self.inplace = inplace  # use in-place ops (e.g. slice assignment)
    
        def forward(self, x):
            z = []  # inference output
            for i in range(self.nl):
                x[i] = self.m[i](x[i])  # conv
                bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
    
                if not self.training:  # inference
                    if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                        self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
    
                    y = x[i].sigmoid()
                    if self.inplace:
                        y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                        y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                        xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                        wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                        y = torch.cat((xy, wh, y[..., 4:]), -1)
                    z.append(y.view(bs, -1, self.no))
    
            return x if self.training else (torch.cat(z, 1), x)
    
        def _make_grid(self, nx=20, ny=20, i=0):
            d = self.anchors[i].device
            if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
            else:
                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
            grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
            anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
                .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
            return grid, anchor_grid
    

4 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

4.1 数据标注简介

通过pip指令即可安装

pip install labelimg

在命令行中输入labelimg即可打开
在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f5cQOAtw-1658373873446)(v2-c685ef696eb08477e480b1f185a05a6f_r.jpg)]

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo
在这里插入图片描述
点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

4.2 数据保存

点击save,保存txt。

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。
在这里插入图片描述

5 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

5.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为fire.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,这里识别手势有10种,所以这里填写10;最后填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。
在这里插入图片描述

5.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别10个类别。
在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:
在这里插入图片描述

5.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数
在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。
在这里插入图片描述

6 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI

#部分代码
from PyQt5 import QtCore, QtGui, QtWidgets


class Ui_Win_mask(object):
    def setupUi(self, Win_mask):
        Win_mask.setObjectName("Win_mask")
        Win_mask.resize(1107, 868)
        Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"
"ui.pushButton->setStyleSheet(qstrStylesheet);")
        self.frame = QtWidgets.QFrame(Win_mask)
        self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))
        self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
        self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
        self.frame.setObjectName("frame")
        self.pushButton = QtWidgets.QPushButton(self.frame)
        self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))
        font = QtGui.QFont()
        font.setBold(True)
        font.setUnderline(True)
        font.setWeight(75)
        self.pushButton.setFont(font)
        self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
        self.pushButton.setObjectName("pushButton")
        self.pushButton_2 = QtWidgets.QPushButton(self.frame)
        self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))
        font = QtGui.QFont()
        font.setBold(True)
        font.setUnderline(True)
        font.setWeight(75)
        self.pushButton_2.setFont(font)
        self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
        self.pushButton_2.setObjectName("pushButton_2")
        self.pushButton_3 = QtWidgets.QPushButton(self.frame)
        self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))
        QtCore.QMetaObject.connectSlotsByName(Win_mask)

6.1图片效果

在这里插入图片描述

6.2 视频效果,摄像头实时效果

在这里插入图片描述

7 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/55434.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

与“云”共舞,联想凌拓的新科技与新突破

伴随着数字经济的高速发展,IT信息技术在数字中国建设中起到的驱动和支撑作用也愈发凸显。特别是2023年人工智能和ChatGPT在全球的持续火爆,更是为整个IT产业注入了澎湃动力。那么面对日新月异的IT信息技术,再结合疫情之后截然不同的经济环境和…

【抖音小游戏】 Unity制作抖音小游戏方案 最新完整详细教程来袭【持续更新】

前言 【抖音小游戏】 Unity制作抖音小游戏方案 最新完整详细教程来袭【持续更新】一、相关准备工作1.1 用到的相关网址1.2 注册字节开发者后台账号 二、相关集成工作2.1 下载需要的集成资源2.2 安装StarkSDK和starksdk-unity-tools工具包2.3 搭建测试场景 三、构建发布3.1 发布…

【深度学习】MAT: Mask-Aware Transformer for Large Hole Image Inpainting

论文:https://arxiv.org/abs/2203.15270 代码:https://github.com/fenglinglwb/MAT 文章目录 AbstractIntroductionRelated WorkMethod总体架构卷积头Transformer主体Adjusted Transformer Block Multi-Head Contextual Attention Style Manipulation Mo…

探索Vue组件通信的秘密:打破隔阂,实现数据共享

一、Vue组件通信 每个组件都有自己的数据, 提供在data中, 每个组件的数据是独立的, 组件数据无法互相直接访问 (合理的)但是如果需要跨组件访问数据, 就需要用到组件通信 要是有一万个商品????就要写一万个吗?函数调用…

KubeSphere 3.4.0 发布:支持 K8s v1.26

2023 年 07 月 26 日,KubeSphere 开源社区激动地向大家宣布,KubeSphere 3.4.0 正式发布! 让我们先简单回顾下之前三个大版本的主要变化: KubeSphere 3.1.0 新增了“边缘计算”、“计量计费” 等功能,将 Kubernetes 从…

myeclipse的Debug模式

1.表示当前实现继续运行直到下一个断点,快捷键为F8。 2.表示打断整个进程 3.表示进入当前方法,快捷键为F5。 4.表示运行下一行代码,快捷键为F6。 5.表示退出当前方法,返回到调用层,快捷键为F7。 6.表示当前线程的…

kotlin 编写一个简单的天气预报app(五)增加forcast接口并显示

参考资料 OpenWeatherMap提供了一个/forecast接口,用于获取未来几天的天气预报。你可以使用HTTP GET请求访问该接口,并根据你所在的城市或地理坐标获取相应的天气数据。 以下是一个示例请求的URL和一些常用的参数: URL: http://api.openwe…

我的创作纪念日——256天

机缘 最开始我写博客没有什么特别的原因,主要是因为以下几点: 练习自己的语言组织能力 记录自己学习生活中学到的知识 为和我同一个学习阶段的朋友提供帮助 事实上最开始我根本不指望我的博客有多少人看,主要是想找一个好的保存 Markdown 笔…

花费7元训练自己的GPT 2模型

在上一篇博客中,我介绍了用Tensorflow来重现GPT 1的模型和训练的过程。这次我打算用Pytorch来重现GPT 2的模型并从头进行训练。 GPT 2的模型相比GPT 1的改进并不多,主要在以下方面: 1. GPT 2把layer normalization放在每个decoder block的前…

PHP最简单自定义自己的框架(一)

为啥要定义自己的框架: 定制化需求:每个项目都有不同的需求和特点,使用通用的框架可能无法满足所有的要求。自定义框架可以根据具体需求进行定制,提供更加灵活和符合项目需求的解决方案。学习和成长:自定义框架是一个很…

STM32存储左右互搏 I2C总线读写EEPROM ZD24C1MA

STM32存储左右互搏 I2C总线读写EEPROM ZD24C1MA 在较低容量存储领域,EEPROM是常用的存储介质,不同容量的EEPROM的地址对应位数不同,在发送字节的格式上有所区别。EEPROM是非快速访问存储,因为EEPROM按页进行组织,在连…

一文搞懂Redis架构演化之路

目录 从最简单的开始:单机版 Redis 数据持久化:有备无患 主从复制:多副本 哨兵:故障自动切换 分片集群:横向扩展 总结 这篇文章我想和你聊一聊 Redis 的架构演化之路。 现如今 Redis 变得越来越流行,…

图为科技加入深圳市智能交通行业协会 ,打 …

图为科技加入深圳市智能交通行业协会,打造智能交通新生态! 交通是国民经济发展的“大动脉”,交通拥堵、事故频发等问题不仅影响了人们的出行体验,也对经济的发展产生了负面影响。安全、高效、便捷的出行,一直是人们的…

【Unity实用插件篇】| 学会使用 可编程瓦片Tile Map,快速搭建2D地图

前言【Unity 实用插件篇】| 学会使用 可编程瓦片Tile Map,快速搭建2D地图一、导入 Tile Map Editor二、创建调色板 Tile Palette三、快速绘制地图四、TilePalette 调色板功能介绍五、TileMap 相关组件属性介绍GirdTilemapTilemap Renderer 瓦片地图渲染器Tile Assets 瓦片资源…

【Git】分支管理策略

文章目录 分支策略bug分支-master分支出现bug怎么办删除临时分⽀小结 分支策略 在实际开发中,我们应该按照⼏个基本原则进⾏分⽀管理: 1.master分⽀应该是⾮常稳定的,也就是仅⽤来发布新版本,平时不能在上⾯⼲活 2.⼲活都在dev…

Reinforcement Learning with Code 【Code 2. Tabular Sarsa】

Reinforcement Learning with Code 【Code 2. Tabular Sarsa】 This note records how the author begin to learn RL. Both theoretical understanding and code practice are presented. Many material are referenced such as ZhaoShiyu’s Mathematical Foundation of Rei…

Elasticsearch 全文检索 分词检索-Elasticsearch文章四

文章目录 官方文档地址refercence文档全文搜索体系match简单查询match 多词/分词单字段分词match多个词的逻辑控制match的匹配精度match_pharse_prefix分词前缀方式match_bool_prefixmulti_match多字段匹配 query string类型Interval类型DSL查询之Term详解聚合查询之Bucket聚合…

RTT(RT-Thread)线程管理(1.2W字详细讲解)

目录 RTT线程管理 线程管理特点 线程工作机制 线程控制块 线程属性 线程状态之间切换 线程相关操作 创建和删除线程 创建线程 删除线程 动态创建线程实例 启动线程 初始化和脱离线程 初始化线程 脱离线程 静态创建线程实例 线程辅助函数 获得当前线程 让出处…

【LeetCode】446. 等差数列划分II -- 子序列

题目链接 文章目录 1. 思路讲解1.1 dp表的创建1.2 状态转移方程1.3 使用哈希表找到k1.4 初始化1.5 返回值1.6 该题坑爹的一点 2. 代码编写 1. 思路讲解 我们要知道以某个位置为结尾的子序列的数量,可以通过它的以上一位置的为结尾的子序列的数量得知,也…

css3 hover border 流动效果

/* Hover 边线流动 */.hoverDrawLine {border: 0 !important;position: relative;border-radius: 5px;--border-color: #60daaa; } .hoverDrawLine::before, .hoverDrawLine::after {box-sizing: border-box;content: ;position: absolute;border: 2px solid transparent;borde…