【YOLOv8改进[损失函数]】使用结合InnerIoU和Focaler的各种损失函数助力YOLOv8更优秀

目录

一 回归损失函数(Bounding Box Regression Loss)

1 Inner-IoU

2 Focaler-IoU:更聚焦的IoU损失

二 改进YOLOv8的损失函数

1 总体修改

① ultralytics/utils/metrics.py文件

② ultralytics/utils/loss.py文件

③ ultralytics/utils/tal.py文件

2 各种机制的使用

其他


一 回归损失函数(Bounding Box Regression Loss)

1 Inner-IoU

官方论文地址:官方论文地址 点击即可跳转

官方代码地址:官方代码地址 点击即可跳转

论文中分析了边界框的回归过程,指出了IoU损失的局限性,它对不同的检测任务没有很强的泛化能力。基于边界框回归问题的固有特点,提出了一种基于辅助边界框的边界框回归损失Inner-IoU。通过比例因子比率(scale factor ratio)控制辅助边界框的生成,计算损失,加速训练的收敛。它可以集成到现有的基于IoU的损失函数中。通过一系列的模拟和烧蚀消融实验验证,该方法优于现有方法。本文提出的方法不仅适用于一般的检测任务,而且对于非常小目标的检测任务也表现良好,证实了该方法的泛化性

官方的代码给出了2种结合方式,文件如下图:

Inner-IoU的描述见下图:

Inner-IoU的实验效果

CIoU 方法, Inner-CIoU (ratio=0.7), Inner-CIoU (ratio=0.75) and Inner-CIoU (ratio=0.8)的检测效果如下图所示:

SIoU 方法, Inner-SIoU (ratio=0.7), Inner-SIoU (ratio=0.75) and Inner-SIoU (ratio=0.8)的检测效果如下图所示:

2 Focaler-IoU:更聚焦的IoU损失

官方论文地址:官方论文地址 点击即可跳转

官方代码地址:官方代码地址 点击即可跳转

论文中分析了难易样本的分布对目标检测的影响。当困难样品占主导地位时,需要关注困难样品以提高检测性能。当简单样本的比例较大时,则相反。论文中提出了Focaler-IoU方法,通过线性区间映射重建原始IoU损失,达到聚焦难易样本的目的。最后通过对比实验证明,该方法能够有效提高检测性能

为了在不同的回归样本中关注不同的检测任务,使用线性间隔映射方法重构IoU损失,这有助于提高边缘回归。具体的公式如下所示:

将Focaler-IoU应用于现有的基于IoU的边界框回归损失函数中,如下所示: 

 实验结果如下:

 GIoU、DIoU、CIoU、EIoU和MPDIou等的概述见使用MPDIou回归损失函数帮助YOLOv9模型更优秀  点击此处即可跳转

二 改进YOLOv8的损失函数

1 总体修改

首先,我们现将后续会使用到的损失函数集成到项目中。

① ultralytics/utils/metrics.py文件

utils/metrics.py文件中,使用下述代码(替换后的部分)替换掉bbox_iou()函数,即将被替换的bbox_iou()函数如下图所示:

使用下述的替换代码替换掉下述原始代码

  • a 原始代码
# before
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    """
    Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4).

    Args:
        box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4).
        box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4).
        xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in
                               (x1, y1, x2, y2) format. Defaults to True.
        GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False.
        DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False.
        CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags.
    """

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * (
        b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
    ).clamp_(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    iou = inter / union
    if CIoU or DIoU or GIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw.pow(2) + ch.pow(2) + eps  # convex diagonal squared
            rho2 = (
                (b2_x1 + b2_x2 - b1_x1 - b1_x2).pow(2) + (b2_y1 + b2_y2 - b1_y1 - b1_y2).pow(2)
            ) / 4  # center dist**2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return iou  # IoU
  • b 替换代码
# after
class WIoU_Scale:
    ''' monotonous: {
            None: origin v1
            True: monotonic FM v2
            False: non-monotonic FM v3
        }
    '''
    iou_mean = 1.
    monotonous = False
    _momentum = 1 - 0.5 ** (1 / 7000)
    _is_train = True

    def __init__(self, iou):
        self.iou = iou
        self._update(self)

    @classmethod
    def _update(cls, self):
        if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                         cls._momentum * self.iou.detach().mean().item()

    @classmethod
    def _scaled_loss(cls, self, gamma=1.9, delta=3):
        if isinstance(self.monotonous, bool):
            if self.monotonous:
                return (self.iou.detach() / self.iou_mean).sqrt()
            else:
                beta = self.iou.detach() / self.iou_mean
                alpha = delta * torch.pow(gamma, beta - delta)
                return beta / alpha
        return 1


def bbox_iou(box1, box2, xywh=True, ratio=1, GIoU=False, DIoU=False, CIoU=False,
             SIoU=False, EIoU=False, WIoU=False, MPDIoU=False, LMPDIoU=False,
             Inner=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
    # 计算box1与box2之间的Intersection over Union(IoU)
    # 获取bounding box的坐标
    if Inner:
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2

        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_ * ratio, x1 + w1_ * ratio, \
                                     y1 - h1_ * ratio, y1 + h1_ * ratio
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_ * ratio, x2 + w2_ * ratio, \
                                     y2 - h2_ * ratio, y2 + h2_ * ratio
        # 计算交集面积
        inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
                (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
        # 计算并集面积
        union = w1 * ratio * h1 * ratio + w2 * ratio * h2 * ratio - inter + eps

        iou = inter / union  # inner_iou

    else:
        # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
        if xywh:  # xywh转换为xyxy格式
            (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
            w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
            b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
            b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
        else:  # x1, y1, x2, y2 = box1
            b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
            b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
            w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
            w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps

        # 计算交集面积
        inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \
                (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)

        # 计算并集面积
        union = w1 * h1 + w2 * h2 - inter + eps

        # 计算IoU值
        iou = inter / union

    if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU or MPDIoU or LMPDIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # 计算最小外接矩形的宽度
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # 计算最小外接矩形的高度
        if CIoU or DIoU or EIoU or SIoU or WIoU or MPDIoU or LMPDIoU:  # Distance or Complete IoU
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (
                    b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # 中心点距离的平方
            if CIoU:
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha_ciou = v / (v - iou + (1 + eps))
                if Focal:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps), gamma)  # Focal_CIoU的计算
                else:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
            elif MPDIoU:
                d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2
                d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2
                w = (b2_x2 - b2_x1)  # x2 - x1
                h = (b2_y2 - b2_y1)  # y2 - y1
                if Focal:
                    return iou - ((d1 + d2) / (w ** 2 + h ** 2)), torch.pow(inter / (union + eps), gamma)# Focal_MPDIoU
                else:
                    return iou - (d1 + d2) / (w ** 2 + h ** 2)
            elif LMPDIoU:
                d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2
                d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2
                w = (b2_x2 - b2_x1)  # x2 - x1
                h = (b2_y2 - b2_y1)  # y2 - y1
                if Focal:
                    return 1 - (iou - (d1 + d2) / (w ** 2 + h ** 2)), torch.pow(inter / (union + eps), gamma)# Focal_MPDIo  # MPDIoU
                else:
                    return 1 - iou + d1 / (w ** 2 + h ** 2) + d2 / (w ** 2 + h ** 2)
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = torch.pow(cw ** 2 + eps, alpha)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma) # Focal_EIou
                else:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIou
            elif SIoU:
                # SIoU
                s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
                s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                rho_x = (s_cw / cw) ** 2
                rho_y = (s_ch / ch) ** 2
                gamma = angle_cost - 2
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                if Focal:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma) # Focal_SIou的计算
                else:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIou
            elif WIoU:
                self = WIoU_Scale(1 - (inter / union))
                dist = getattr(WIoU_Scale, '_scaled_loss')(self)
                return iou * dist  # WIoU

            if Focal:
                return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoU
            else:
                return iou - rho2 / c2  # DIoU

        c_area = cw * ch + eps  # convex area
        if Focal:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps), gamma)# Focal_GIoU
        else:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
    if Focal:
        return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoU
    else:
        return iou  # IoU的值

② ultralytics/utils/loss.py文件

接下来,需要修改loss.py文件中的内容。

before
after

③ ultralytics/utils/tal.py文件

before
after

2 各种机制的使用

与上述内容类比,如果将对应机制设置为True则开启,否则关闭。之后,可以尝试多种组合方式去训练模型。

那么。接下来开始训练模型吧!!!🌺🌺🌺

【YOLOv8】使用自己的数据集训练模型 点击即可跳转

其他

如果觉得替换部分内容不方便的话,可以直接复制下述文件对应替换原始py文件的内容:

  • ① ultralytics/utils/metrics.py
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""Model validation metrics."""

import math
import warnings
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import torch

from ultralytics.utils import LOGGER, SimpleClass, TryExcept, plt_settings

OKS_SIGMA = (
    np.array([0.26, 0.25, 0.25, 0.35, 0.35, 0.79, 0.79, 0.72, 0.72, 0.62, 0.62, 1.07, 1.07, 0.87, 0.87, 0.89, 0.89])
    / 10.0
)


def bbox_ioa(box1, box2, iou=False, eps=1e-7):
    """
    Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format.

    Args:
        box1 (np.ndarray): A numpy array of shape (n, 4) representing n bounding boxes.
        box2 (np.ndarray): A numpy array of shape (m, 4) representing m bounding boxes.
        iou (bool): Calculate the standard IoU if True else return inter_area/box2_area.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (np.ndarray): A numpy array of shape (n, m) representing the intersection over box2 area.
    """

    # Get the coordinates of bounding boxes
    b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
    b2_x1, b2_y1, b2_x2, b2_y2 = box2.T

    # Intersection area
    inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * (
        np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)
    ).clip(0)

    # Box2 area
    area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
    if iou:
        box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
        area = area + box1_area[:, None] - inter_area

    # Intersection over box2 area
    return inter_area / (area + eps)


def box_iou(box1, box2, eps=1e-7):
    """
    Calculate intersection-over-union (IoU) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py

    Args:
        box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes.
        box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
    """

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)

class WIoU_Scale:
    ''' monotonous: {
            None: origin v1
            True: monotonic FM v2
            False: non-monotonic FM v3
        }
    '''
    iou_mean = 1.
    monotonous = False
    _momentum = 1 - 0.5 ** (1 / 7000)
    _is_train = True

    def __init__(self, iou):
        self.iou = iou
        self._update(self)

    @classmethod
    def _update(cls, self):
        if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                         cls._momentum * self.iou.detach().mean().item()

    @classmethod
    def _scaled_loss(cls, self, gamma=1.9, delta=3):
        if isinstance(self.monotonous, bool):
            if self.monotonous:
                return (self.iou.detach() / self.iou_mean).sqrt()
            else:
                beta = self.iou.detach() / self.iou_mean
                alpha = delta * torch.pow(gamma, beta - delta)
                return beta / alpha
        return 1


def bbox_iou(box1, box2, xywh=True, ratio=1, GIoU=False, DIoU=False, CIoU=False,
             SIoU=False, EIoU=False, WIoU=False, MPDIoU=False, LMPDIoU=False,
             Inner=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
    # 计算box1与box2之间的Intersection over Union(IoU)
    # 获取bounding box的坐标
    if Inner:
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2

        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_ * ratio, x1 + w1_ * ratio, \
                                     y1 - h1_ * ratio, y1 + h1_ * ratio
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_ * ratio, x2 + w2_ * ratio, \
                                     y2 - h2_ * ratio, y2 + h2_ * ratio
        # 计算交集面积
        inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
                (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
        # 计算并集面积
        union = w1 * ratio * h1 * ratio + w2 * ratio * h2 * ratio - inter + eps

        iou = inter / union  # inner_iou

    else:
        # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
        if xywh:  # xywh转换为xyxy格式
            (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
            w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
            b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
            b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
        else:  # x1, y1, x2, y2 = box1
            b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
            b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
            w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
            w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps

        # 计算交集面积
        inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \
                (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)

        # 计算并集面积
        union = w1 * h1 + w2 * h2 - inter + eps

        # 计算IoU值
        iou = inter / union

    if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU or MPDIoU or LMPDIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # 计算最小外接矩形的宽度
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # 计算最小外接矩形的高度
        if CIoU or DIoU or EIoU or SIoU or WIoU or MPDIoU or LMPDIoU:  # Distance or Complete IoU
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (
                    b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # 中心点距离的平方
            if CIoU:
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha_ciou = v / (v - iou + (1 + eps))
                if Focal:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps), gamma)  # Focal_CIoU的计算
                else:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
            elif MPDIoU:
                d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2
                d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2
                w = (b2_x2 - b2_x1)  # x2 - x1
                h = (b2_y2 - b2_y1)  # y2 - y1
                if Focal:
                    return iou - ((d1 + d2) / (w ** 2 + h ** 2)), torch.pow(inter / (union + eps), gamma)# Focal_MPDIoU
                else:
                    return iou - (d1 + d2) / (w ** 2 + h ** 2)
            elif LMPDIoU:
                d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2
                d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2
                w = (b2_x2 - b2_x1)  # x2 - x1
                h = (b2_y2 - b2_y1)  # y2 - y1
                if Focal:
                    return 1 - (iou - (d1 + d2) / (w ** 2 + h ** 2)), torch.pow(inter / (union + eps), gamma)# Focal_MPDIo  # MPDIoU
                else:
                    return 1 - iou + d1 / (w ** 2 + h ** 2) + d2 / (w ** 2 + h ** 2)
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = torch.pow(cw ** 2 + eps, alpha)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma) # Focal_EIou
                else:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIou
            elif SIoU:
                # SIoU
                s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
                s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                rho_x = (s_cw / cw) ** 2
                rho_y = (s_ch / ch) ** 2
                gamma = angle_cost - 2
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                if Focal:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma) # Focal_SIou的计算
                else:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIou
            elif WIoU:
                self = WIoU_Scale(1 - (inter / union))
                dist = getattr(WIoU_Scale, '_scaled_loss')(self)
                return iou * dist  # WIoU

            if Focal:
                return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoU
            else:
                return iou - rho2 / c2  # DIoU

        c_area = cw * ch + eps  # convex area
        if Focal:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps), gamma)# Focal_GIoU
        else:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
    if Focal:
        return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoU
    else:
        return iou  # IoU的值


def mask_iou(mask1, mask2, eps=1e-7):
    """
    Calculate masks IoU.

    Args:
        mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the
                        product of image width and height.
        mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the
                        product of image width and height.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): A tensor of shape (N, M) representing masks IoU.
    """
    intersection = torch.matmul(mask1, mask2.T).clamp_(0)
    union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection  # (area1 + area2) - intersection
    return intersection / (union + eps)


def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7):
    """
    Calculate Object Keypoint Similarity (OKS).

    Args:
        kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints.
        kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints.
        area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth.
        sigma (list): A list containing 17 values representing keypoint scales.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): A tensor of shape (N, M) representing keypoint similarities.
    """
    d = (kpt1[:, None, :, 0] - kpt2[..., 0]).pow(2) + (kpt1[:, None, :, 1] - kpt2[..., 1]).pow(2)  # (N, M, 17)
    sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype)  # (17, )
    kpt_mask = kpt1[..., 2] != 0  # (N, 17)
    e = d / ((2 * sigma).pow(2) * (area[:, None, None] + eps) * 2)  # from cocoeval
    # e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2  # from formula
    return ((-e).exp() * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)


def _get_covariance_matrix(boxes):
    """
    Generating covariance matrix from obbs.

    Args:
        boxes (torch.Tensor): A tensor of shape (N, 5) representing rotated bounding boxes, with xywhr format.

    Returns:
        (torch.Tensor): Covariance metrixs corresponding to original rotated bounding boxes.
    """
    # Gaussian bounding boxes, ignore the center points (the first two columns) because they are not needed here.
    gbbs = torch.cat((boxes[:, 2:4].pow(2) / 12, boxes[:, 4:]), dim=-1)
    a, b, c = gbbs.split(1, dim=-1)
    cos = c.cos()
    sin = c.sin()
    cos2 = cos.pow(2)
    sin2 = sin.pow(2)
    return a * cos2 + b * sin2, a * sin2 + b * cos2, (a - b) * cos * sin


def probiou(obb1, obb2, CIoU=False, eps=1e-7):
    """
    Calculate the prob IoU between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf.

    Args:
        obb1 (torch.Tensor): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format.
        obb2 (torch.Tensor): A tensor of shape (N, 5) representing predicted obbs, with xywhr format.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): A tensor of shape (N, ) representing obb similarities.
    """
    x1, y1 = obb1[..., :2].split(1, dim=-1)
    x2, y2 = obb2[..., :2].split(1, dim=-1)
    a1, b1, c1 = _get_covariance_matrix(obb1)
    a2, b2, c2 = _get_covariance_matrix(obb2)

    t1 = (
        ((a1 + a2) * (y1 - y2).pow(2) + (b1 + b2) * (x1 - x2).pow(2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)
    ) * 0.25
    t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)) * 0.5
    t3 = (
        ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2))
        / (4 * ((a1 * b1 - c1.pow(2)).clamp_(0) * (a2 * b2 - c2.pow(2)).clamp_(0)).sqrt() + eps)
        + eps
    ).log() * 0.5
    bd = (t1 + t2 + t3).clamp(eps, 100.0)
    hd = (1.0 - (-bd).exp() + eps).sqrt()
    iou = 1 - hd
    if CIoU:  # only include the wh aspect ratio part
        w1, h1 = obb1[..., 2:4].split(1, dim=-1)
        w2, h2 = obb2[..., 2:4].split(1, dim=-1)
        v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
        with torch.no_grad():
            alpha = v / (v - iou + (1 + eps))
        return iou - v * alpha  # CIoU
    return iou


def batch_probiou(obb1, obb2, eps=1e-7):
    """
    Calculate the prob IoU between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf.

    Args:
        obb1 (torch.Tensor | np.ndarray): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format.
        obb2 (torch.Tensor | np.ndarray): A tensor of shape (M, 5) representing predicted obbs, with xywhr format.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.

    Returns:
        (torch.Tensor): A tensor of shape (N, M) representing obb similarities.
    """
    obb1 = torch.from_numpy(obb1) if isinstance(obb1, np.ndarray) else obb1
    obb2 = torch.from_numpy(obb2) if isinstance(obb2, np.ndarray) else obb2

    x1, y1 = obb1[..., :2].split(1, dim=-1)
    x2, y2 = (x.squeeze(-1)[None] for x in obb2[..., :2].split(1, dim=-1))
    a1, b1, c1 = _get_covariance_matrix(obb1)
    a2, b2, c2 = (x.squeeze(-1)[None] for x in _get_covariance_matrix(obb2))

    t1 = (
        ((a1 + a2) * (y1 - y2).pow(2) + (b1 + b2) * (x1 - x2).pow(2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)
    ) * 0.25
    t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)) * 0.5
    t3 = (
        ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2))
        / (4 * ((a1 * b1 - c1.pow(2)).clamp_(0) * (a2 * b2 - c2.pow(2)).clamp_(0)).sqrt() + eps)
        + eps
    ).log() * 0.5
    bd = (t1 + t2 + t3).clamp(eps, 100.0)
    hd = (1.0 - (-bd).exp() + eps).sqrt()
    return 1 - hd


def smooth_BCE(eps=0.1):
    """
    Computes smoothed positive and negative Binary Cross-Entropy targets.

    This function calculates positive and negative label smoothing BCE targets based on a given epsilon value.
    For implementation details, refer to https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441.

    Args:
        eps (float, optional): The epsilon value for label smoothing. Defaults to 0.1.

    Returns:
        (tuple): A tuple containing the positive and negative label smoothing BCE targets.
    """
    return 1.0 - 0.5 * eps, 0.5 * eps


class ConfusionMatrix:
    """
    A class for calculating and updating a confusion matrix for object detection and classification tasks.

    Attributes:
        task (str): The type of task, either 'detect' or 'classify'.
        matrix (np.ndarray): The confusion matrix, with dimensions depending on the task.
        nc (int): The number of classes.
        conf (float): The confidence threshold for detections.
        iou_thres (float): The Intersection over Union threshold.
    """

    def __init__(self, nc, conf=0.25, iou_thres=0.45, task="detect"):
        """Initialize attributes for the YOLO model."""
        self.task = task
        self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == "detect" else np.zeros((nc, nc))
        self.nc = nc  # number of classes
        self.conf = 0.25 if conf in {None, 0.001} else conf  # apply 0.25 if default val conf is passed
        self.iou_thres = iou_thres

    def process_cls_preds(self, preds, targets):
        """
        Update confusion matrix for classification task.

        Args:
            preds (Array[N, min(nc,5)]): Predicted class labels.
            targets (Array[N, 1]): Ground truth class labels.
        """
        preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
        for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
            self.matrix[p][t] += 1

    def process_batch(self, detections, gt_bboxes, gt_cls):
        """
        Update confusion matrix for object detection task.

        Args:
            detections (Array[N, 6] | Array[N, 7]): Detected bounding boxes and their associated information.
                                      Each row should contain (x1, y1, x2, y2, conf, class)
                                      or with an additional element `angle` when it's obb.
            gt_bboxes (Array[M, 4]| Array[N, 5]): Ground truth bounding boxes with xyxy/xyxyr format.
            gt_cls (Array[M]): The class labels.
        """
        if gt_cls.shape[0] == 0:  # Check if labels is empty
            if detections is not None:
                detections = detections[detections[:, 4] > self.conf]
                detection_classes = detections[:, 5].int()
                for dc in detection_classes:
                    self.matrix[dc, self.nc] += 1  # false positives
            return
        if detections is None:
            gt_classes = gt_cls.int()
            for gc in gt_classes:
                self.matrix[self.nc, gc] += 1  # background FN
            return

        detections = detections[detections[:, 4] > self.conf]
        gt_classes = gt_cls.int()
        detection_classes = detections[:, 5].int()
        is_obb = detections.shape[1] == 7 and gt_bboxes.shape[1] == 5  # with additional `angle` dimension
        iou = (
            batch_probiou(gt_bboxes, torch.cat([detections[:, :4], detections[:, -1:]], dim=-1))
            if is_obb
            else box_iou(gt_bboxes, detections[:, :4])
        )

        x = torch.where(iou > self.iou_thres)
        if x[0].shape[0]:
            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
            if x[0].shape[0] > 1:
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        else:
            matches = np.zeros((0, 3))

        n = matches.shape[0] > 0
        m0, m1, _ = matches.transpose().astype(int)
        for i, gc in enumerate(gt_classes):
            j = m0 == i
            if n and sum(j) == 1:
                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
            else:
                self.matrix[self.nc, gc] += 1  # true background

        if n:
            for i, dc in enumerate(detection_classes):
                if not any(m1 == i):
                    self.matrix[dc, self.nc] += 1  # predicted background

    def matrix(self):
        """Returns the confusion matrix."""
        return self.matrix

    def tp_fp(self):
        """Returns true positives and false positives."""
        tp = self.matrix.diagonal()  # true positives
        fp = self.matrix.sum(1) - tp  # false positives
        # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
        return (tp[:-1], fp[:-1]) if self.task == "detect" else (tp, fp)  # remove background class if task=detect

    @TryExcept("WARNING ⚠️ ConfusionMatrix plot failure")
    @plt_settings()
    def plot(self, normalize=True, save_dir="", names=(), on_plot=None):
        """
        Plot the confusion matrix using seaborn and save it to a file.

        Args:
            normalize (bool): Whether to normalize the confusion matrix.
            save_dir (str): Directory where the plot will be saved.
            names (tuple): Names of classes, used as labels on the plot.
            on_plot (func): An optional callback to pass plots path and data when they are rendered.
        """
        import seaborn  # scope for faster 'import ultralytics'

        array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1)  # normalize columns
        array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

        fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
        nc, nn = self.nc, len(names)  # number of classes, names
        seaborn.set_theme(font_scale=1.0 if nc < 50 else 0.8)  # for label size
        labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
        ticklabels = (list(names) + ["background"]) if labels else "auto"
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
            seaborn.heatmap(
                array,
                ax=ax,
                annot=nc < 30,
                annot_kws={"size": 8},
                cmap="Blues",
                fmt=".2f" if normalize else ".0f",
                square=True,
                vmin=0.0,
                xticklabels=ticklabels,
                yticklabels=ticklabels,
            ).set_facecolor((1, 1, 1))
        title = "Confusion Matrix" + " Normalized" * normalize
        ax.set_xlabel("True")
        ax.set_ylabel("Predicted")
        ax.set_title(title)
        plot_fname = Path(save_dir) / f'{title.lower().replace(" ", "_")}.png'
        fig.savefig(plot_fname, dpi=250)
        plt.close(fig)
        if on_plot:
            on_plot(plot_fname)

    def print(self):
        """Print the confusion matrix to the console."""
        for i in range(self.nc + 1):
            LOGGER.info(" ".join(map(str, self.matrix[i])))


def smooth(y, f=0.05):
    """Box filter of fraction f."""
    nf = round(len(y) * f * 2) // 2 + 1  # number of filter elements (must be odd)
    p = np.ones(nf // 2)  # ones padding
    yp = np.concatenate((p * y[0], y, p * y[-1]), 0)  # y padded
    return np.convolve(yp, np.ones(nf) / nf, mode="valid")  # y-smoothed


@plt_settings()
def plot_pr_curve(px, py, ap, save_dir=Path("pr_curve.png"), names=(), on_plot=None):
    """Plots a precision-recall curve."""
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
    py = np.stack(py, axis=1)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py.T):
            ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}")  # plot(recall, precision)
    else:
        ax.plot(px, py, linewidth=1, color="grey")  # plot(recall, precision)

    ax.plot(px, py.mean(1), linewidth=3, color="blue", label="all classes %.3f mAP@0.5" % ap[:, 0].mean())
    ax.set_xlabel("Recall")
    ax.set_ylabel("Precision")
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    ax.set_title("Precision-Recall Curve")
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(save_dir)


@plt_settings()
def plot_mc_curve(px, py, save_dir=Path("mc_curve.png"), names=(), xlabel="Confidence", ylabel="Metric", on_plot=None):
    """Plots a metric-confidence curve."""
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py):
            ax.plot(px, y, linewidth=1, label=f"{names[i]}")  # plot(confidence, metric)
    else:
        ax.plot(px, py.T, linewidth=1, color="grey")  # plot(confidence, metric)

    y = smooth(py.mean(0), 0.05)
    ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}")
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    ax.set_title(f"{ylabel}-Confidence Curve")
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(save_dir)


def compute_ap(recall, precision):
    """
    Compute the average precision (AP) given the recall and precision curves.

    Args:
        recall (list): The recall curve.
        precision (list): The precision curve.

    Returns:
        (float): Average precision.
        (np.ndarray): Precision envelope curve.
        (np.ndarray): Modified recall curve with sentinel values added at the beginning and end.
    """

    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = "interp"  # methods: 'continuous', 'interp'
    if method == "interp":
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x-axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap, mpre, mrec


def ap_per_class(
    tp, conf, pred_cls, target_cls, plot=False, on_plot=None, save_dir=Path(), names=(), eps=1e-16, prefix=""
):
    """
    Computes the average precision per class for object detection evaluation.

    Args:
        tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
        conf (np.ndarray): Array of confidence scores of the detections.
        pred_cls (np.ndarray): Array of predicted classes of the detections.
        target_cls (np.ndarray): Array of true classes of the detections.
        plot (bool, optional): Whether to plot PR curves or not. Defaults to False.
        on_plot (func, optional): A callback to pass plots path and data when they are rendered. Defaults to None.
        save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.
        names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.
        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.
        prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.

    Returns:
        (tuple): A tuple of six arrays and one array of unique classes, where:
            tp (np.ndarray): True positive counts at threshold given by max F1 metric for each class.Shape: (nc,).
            fp (np.ndarray): False positive counts at threshold given by max F1 metric for each class. Shape: (nc,).
            p (np.ndarray): Precision values at threshold given by max F1 metric for each class. Shape: (nc,).
            r (np.ndarray): Recall values at threshold given by max F1 metric for each class. Shape: (nc,).
            f1 (np.ndarray): F1-score values at threshold given by max F1 metric for each class. Shape: (nc,).
            ap (np.ndarray): Average precision for each class at different IoU thresholds. Shape: (nc, 10).
            unique_classes (np.ndarray): An array of unique classes that have data. Shape: (nc,).
            p_curve (np.ndarray): Precision curves for each class. Shape: (nc, 1000).
            r_curve (np.ndarray): Recall curves for each class. Shape: (nc, 1000).
            f1_curve (np.ndarray): F1-score curves for each class. Shape: (nc, 1000).
            x (np.ndarray): X-axis values for the curves. Shape: (1000,).
            prec_values: Precision values at mAP@0.5 for each class. Shape: (nc, 1000).
    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes, nt = np.unique(target_cls, return_counts=True)
    nc = unique_classes.shape[0]  # number of classes, number of detections

    # Create Precision-Recall curve and compute AP for each class
    x, prec_values = np.linspace(0, 1, 1000), []

    # Average precision, precision and recall curves
    ap, p_curve, r_curve = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = nt[ci]  # number of labels
        n_p = i.sum()  # number of predictions
        if n_p == 0 or n_l == 0:
            continue

        # Accumulate FPs and TPs
        fpc = (1 - tp[i]).cumsum(0)
        tpc = tp[i].cumsum(0)

        # Recall
        recall = tpc / (n_l + eps)  # recall curve
        r_curve[ci] = np.interp(-x, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases

        # Precision
        precision = tpc / (tpc + fpc)  # precision curve
        p_curve[ci] = np.interp(-x, -conf[i], precision[:, 0], left=1)  # p at pr_score

        # AP from recall-precision curve
        for j in range(tp.shape[1]):
            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
            if plot and j == 0:
                prec_values.append(np.interp(x, mrec, mpre))  # precision at mAP@0.5

    prec_values = np.array(prec_values)  # (nc, 1000)

    # Compute F1 (harmonic mean of precision and recall)
    f1_curve = 2 * p_curve * r_curve / (p_curve + r_curve + eps)
    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
    names = dict(enumerate(names))  # to dict
    if plot:
        plot_pr_curve(x, prec_values, ap, save_dir / f"{prefix}PR_curve.png", names, on_plot=on_plot)
        plot_mc_curve(x, f1_curve, save_dir / f"{prefix}F1_curve.png", names, ylabel="F1", on_plot=on_plot)
        plot_mc_curve(x, p_curve, save_dir / f"{prefix}P_curve.png", names, ylabel="Precision", on_plot=on_plot)
        plot_mc_curve(x, r_curve, save_dir / f"{prefix}R_curve.png", names, ylabel="Recall", on_plot=on_plot)

    i = smooth(f1_curve.mean(0), 0.1).argmax()  # max F1 index
    p, r, f1 = p_curve[:, i], r_curve[:, i], f1_curve[:, i]  # max-F1 precision, recall, F1 values
    tp = (r * nt).round()  # true positives
    fp = (tp / (p + eps) - tp).round()  # false positives
    return tp, fp, p, r, f1, ap, unique_classes.astype(int), p_curve, r_curve, f1_curve, x, prec_values


class Metric(SimpleClass):
    """
    Class for computing evaluation metrics for YOLOv8 model.

    Attributes:
        p (list): Precision for each class. Shape: (nc,).
        r (list): Recall for each class. Shape: (nc,).
        f1 (list): F1 score for each class. Shape: (nc,).
        all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
        ap_class_index (list): Index of class for each AP score. Shape: (nc,).
        nc (int): Number of classes.

    Methods:
        ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
        ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
        mp(): Mean precision of all classes. Returns: Float.
        mr(): Mean recall of all classes. Returns: Float.
        map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.
        map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.
        map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.
        mean_results(): Mean of results, returns mp, mr, map50, map.
        class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].
        maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).
        fitness(): Model fitness as a weighted combination of metrics. Returns: Float.
        update(results): Update metric attributes with new evaluation results.
    """

    def __init__(self) -> None:
        """Initializes a Metric instance for computing evaluation metrics for the YOLOv8 model."""
        self.p = []  # (nc, )
        self.r = []  # (nc, )
        self.f1 = []  # (nc, )
        self.all_ap = []  # (nc, 10)
        self.ap_class_index = []  # (nc, )
        self.nc = 0

    @property
    def ap50(self):
        """
        Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes.

        Returns:
            (np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available.
        """
        return self.all_ap[:, 0] if len(self.all_ap) else []

    @property
    def ap(self):
        """
        Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.

        Returns:
            (np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available.
        """
        return self.all_ap.mean(1) if len(self.all_ap) else []

    @property
    def mp(self):
        """
        Returns the Mean Precision of all classes.

        Returns:
            (float): The mean precision of all classes.
        """
        return self.p.mean() if len(self.p) else 0.0

    @property
    def mr(self):
        """
        Returns the Mean Recall of all classes.

        Returns:
            (float): The mean recall of all classes.
        """
        return self.r.mean() if len(self.r) else 0.0

    @property
    def map50(self):
        """
        Returns the mean Average Precision (mAP) at an IoU threshold of 0.5.

        Returns:
            (float): The mAP at an IoU threshold of 0.5.
        """
        return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0

    @property
    def map75(self):
        """
        Returns the mean Average Precision (mAP) at an IoU threshold of 0.75.

        Returns:
            (float): The mAP at an IoU threshold of 0.75.
        """
        return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0

    @property
    def map(self):
        """
        Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.

        Returns:
            (float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
        """
        return self.all_ap.mean() if len(self.all_ap) else 0.0

    def mean_results(self):
        """Mean of results, return mp, mr, map50, map."""
        return [self.mp, self.mr, self.map50, self.map]

    def class_result(self, i):
        """Class-aware result, return p[i], r[i], ap50[i], ap[i]."""
        return self.p[i], self.r[i], self.ap50[i], self.ap[i]

    @property
    def maps(self):
        """MAP of each class."""
        maps = np.zeros(self.nc) + self.map
        for i, c in enumerate(self.ap_class_index):
            maps[c] = self.ap[i]
        return maps

    def fitness(self):
        """Model fitness as a weighted combination of metrics."""
        w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
        return (np.array(self.mean_results()) * w).sum()

    def update(self, results):
        """
        Updates the evaluation metrics of the model with a new set of results.

        Args:
            results (tuple): A tuple containing the following evaluation metrics:
                - p (list): Precision for each class. Shape: (nc,).
                - r (list): Recall for each class. Shape: (nc,).
                - f1 (list): F1 score for each class. Shape: (nc,).
                - all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
                - ap_class_index (list): Index of class for each AP score. Shape: (nc,).

        Side Effects:
            Updates the class attributes `self.p`, `self.r`, `self.f1`, `self.all_ap`, and `self.ap_class_index` based
            on the values provided in the `results` tuple.
        """
        (
            self.p,
            self.r,
            self.f1,
            self.all_ap,
            self.ap_class_index,
            self.p_curve,
            self.r_curve,
            self.f1_curve,
            self.px,
            self.prec_values,
        ) = results

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []

    @property
    def curves_results(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return [
            [self.px, self.prec_values, "Recall", "Precision"],
            [self.px, self.f1_curve, "Confidence", "F1"],
            [self.px, self.p_curve, "Confidence", "Precision"],
            [self.px, self.r_curve, "Confidence", "Recall"],
        ]


class DetMetrics(SimpleClass):
    """
    This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
    (mAP) of an object detection model.

    Args:
        save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.
        plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.
        on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
        names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.

    Attributes:
        save_dir (Path): A path to the directory where the output plots will be saved.
        plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.
        on_plot (func): An optional callback to pass plots path and data when they are rendered.
        names (tuple of str): A tuple of strings that represents the names of the classes.
        box (Metric): An instance of the Metric class for storing the results of the detection metrics.
        speed (dict): A dictionary for storing the execution time of different parts of the detection process.

    Methods:
        process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.
        keys: Returns a list of keys for accessing the computed detection metrics.
        mean_results: Returns a list of mean values for the computed detection metrics.
        class_result(i): Returns a list of values for the computed detection metrics for a specific class.
        maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.
        fitness: Computes the fitness score based on the computed detection metrics.
        ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.
        results_dict: Returns a dictionary that maps detection metric keys to their computed values.
        curves: TODO
        curves_results: TODO
    """

    def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
        """Initialize a DetMetrics instance with a save directory, plot flag, callback function, and class names."""
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
        self.task = "detect"

    def process(self, tp, conf, pred_cls, target_cls):
        """Process predicted results for object detection and update metrics."""
        results = ap_per_class(
            tp,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            save_dir=self.save_dir,
            names=self.names,
            on_plot=self.on_plot,
        )[2:]
        self.box.nc = len(self.names)
        self.box.update(results)

    @property
    def keys(self):
        """Returns a list of keys for accessing specific metrics."""
        return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"]

    def mean_results(self):
        """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
        return self.box.mean_results()

    def class_result(self, i):
        """Return the result of evaluating the performance of an object detection model on a specific class."""
        return self.box.class_result(i)

    @property
    def maps(self):
        """Returns mean Average Precision (mAP) scores per class."""
        return self.box.maps

    @property
    def fitness(self):
        """Returns the fitness of box object."""
        return self.box.fitness()

    @property
    def ap_class_index(self):
        """Returns the average precision index per class."""
        return self.box.ap_class_index

    @property
    def results_dict(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness]))

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return ["Precision-Recall(B)", "F1-Confidence(B)", "Precision-Confidence(B)", "Recall-Confidence(B)"]

    @property
    def curves_results(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return self.box.curves_results


class SegmentMetrics(SimpleClass):
    """
    Calculates and aggregates detection and segmentation metrics over a given set of classes.

    Args:
        save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
        plot (bool): Whether to save the detection and segmentation plots. Default is False.
        on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
        names (list): List of class names. Default is an empty list.

    Attributes:
        save_dir (Path): Path to the directory where the output plots should be saved.
        plot (bool): Whether to save the detection and segmentation plots.
        on_plot (func): An optional callback to pass plots path and data when they are rendered.
        names (list): List of class names.
        box (Metric): An instance of the Metric class to calculate box detection metrics.
        seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
        speed (dict): Dictionary to store the time taken in different phases of inference.

    Methods:
        process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
        mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
        class_result(i): Returns the detection and segmentation metrics of class `i`.
        maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
        fitness: Returns the fitness scores, which are a single weighted combination of metrics.
        ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
        results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
    """

    def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
        """Initialize a SegmentMetrics instance with a save directory, plot flag, callback function, and class names."""
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.seg = Metric()
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
        self.task = "segment"

    def process(self, tp, tp_m, conf, pred_cls, target_cls):
        """
        Processes the detection and segmentation metrics over the given set of predictions.

        Args:
            tp (list): List of True Positive boxes.
            tp_m (list): List of True Positive masks.
            conf (list): List of confidence scores.
            pred_cls (list): List of predicted classes.
            target_cls (list): List of target classes.
        """

        results_mask = ap_per_class(
            tp_m,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            on_plot=self.on_plot,
            save_dir=self.save_dir,
            names=self.names,
            prefix="Mask",
        )[2:]
        self.seg.nc = len(self.names)
        self.seg.update(results_mask)
        results_box = ap_per_class(
            tp,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            on_plot=self.on_plot,
            save_dir=self.save_dir,
            names=self.names,
            prefix="Box",
        )[2:]
        self.box.nc = len(self.names)
        self.box.update(results_box)

    @property
    def keys(self):
        """Returns a list of keys for accessing metrics."""
        return [
            "metrics/precision(B)",
            "metrics/recall(B)",
            "metrics/mAP50(B)",
            "metrics/mAP50-95(B)",
            "metrics/precision(M)",
            "metrics/recall(M)",
            "metrics/mAP50(M)",
            "metrics/mAP50-95(M)",
        ]

    def mean_results(self):
        """Return the mean metrics for bounding box and segmentation results."""
        return self.box.mean_results() + self.seg.mean_results()

    def class_result(self, i):
        """Returns classification results for a specified class index."""
        return self.box.class_result(i) + self.seg.class_result(i)

    @property
    def maps(self):
        """Returns mAP scores for object detection and semantic segmentation models."""
        return self.box.maps + self.seg.maps

    @property
    def fitness(self):
        """Get the fitness score for both segmentation and bounding box models."""
        return self.seg.fitness() + self.box.fitness()

    @property
    def ap_class_index(self):
        """Boxes and masks have the same ap_class_index."""
        return self.box.ap_class_index

    @property
    def results_dict(self):
        """Returns results of object detection model for evaluation."""
        return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness]))

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return [
            "Precision-Recall(B)",
            "F1-Confidence(B)",
            "Precision-Confidence(B)",
            "Recall-Confidence(B)",
            "Precision-Recall(M)",
            "F1-Confidence(M)",
            "Precision-Confidence(M)",
            "Recall-Confidence(M)",
        ]

    @property
    def curves_results(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return self.box.curves_results + self.seg.curves_results


class PoseMetrics(SegmentMetrics):
    """
    Calculates and aggregates detection and pose metrics over a given set of classes.

    Args:
        save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
        plot (bool): Whether to save the detection and segmentation plots. Default is False.
        on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.
        names (list): List of class names. Default is an empty list.

    Attributes:
        save_dir (Path): Path to the directory where the output plots should be saved.
        plot (bool): Whether to save the detection and segmentation plots.
        on_plot (func): An optional callback to pass plots path and data when they are rendered.
        names (list): List of class names.
        box (Metric): An instance of the Metric class to calculate box detection metrics.
        pose (Metric): An instance of the Metric class to calculate mask segmentation metrics.
        speed (dict): Dictionary to store the time taken in different phases of inference.

    Methods:
        process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
        mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
        class_result(i): Returns the detection and segmentation metrics of class `i`.
        maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
        fitness: Returns the fitness scores, which are a single weighted combination of metrics.
        ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
        results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
    """

    def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
        """Initialize the PoseMetrics class with directory path, class names, and plotting options."""
        super().__init__(save_dir, plot, names)
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.pose = Metric()
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
        self.task = "pose"

    def process(self, tp, tp_p, conf, pred_cls, target_cls):
        """
        Processes the detection and pose metrics over the given set of predictions.

        Args:
            tp (list): List of True Positive boxes.
            tp_p (list): List of True Positive keypoints.
            conf (list): List of confidence scores.
            pred_cls (list): List of predicted classes.
            target_cls (list): List of target classes.
        """

        results_pose = ap_per_class(
            tp_p,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            on_plot=self.on_plot,
            save_dir=self.save_dir,
            names=self.names,
            prefix="Pose",
        )[2:]
        self.pose.nc = len(self.names)
        self.pose.update(results_pose)
        results_box = ap_per_class(
            tp,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            on_plot=self.on_plot,
            save_dir=self.save_dir,
            names=self.names,
            prefix="Box",
        )[2:]
        self.box.nc = len(self.names)
        self.box.update(results_box)

    @property
    def keys(self):
        """Returns list of evaluation metric keys."""
        return [
            "metrics/precision(B)",
            "metrics/recall(B)",
            "metrics/mAP50(B)",
            "metrics/mAP50-95(B)",
            "metrics/precision(P)",
            "metrics/recall(P)",
            "metrics/mAP50(P)",
            "metrics/mAP50-95(P)",
        ]

    def mean_results(self):
        """Return the mean results of box and pose."""
        return self.box.mean_results() + self.pose.mean_results()

    def class_result(self, i):
        """Return the class-wise detection results for a specific class i."""
        return self.box.class_result(i) + self.pose.class_result(i)

    @property
    def maps(self):
        """Returns the mean average precision (mAP) per class for both box and pose detections."""
        return self.box.maps + self.pose.maps

    @property
    def fitness(self):
        """Computes classification metrics and speed using the `targets` and `pred` inputs."""
        return self.pose.fitness() + self.box.fitness()

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return [
            "Precision-Recall(B)",
            "F1-Confidence(B)",
            "Precision-Confidence(B)",
            "Recall-Confidence(B)",
            "Precision-Recall(P)",
            "F1-Confidence(P)",
            "Precision-Confidence(P)",
            "Recall-Confidence(P)",
        ]

    @property
    def curves_results(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return self.box.curves_results + self.pose.curves_results


class ClassifyMetrics(SimpleClass):
    """
    Class for computing classification metrics including top-1 and top-5 accuracy.

    Attributes:
        top1 (float): The top-1 accuracy.
        top5 (float): The top-5 accuracy.
        speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.

    Properties:
        fitness (float): The fitness of the model, which is equal to top-5 accuracy.
        results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.
        keys (List[str]): A list of keys for the results_dict.

    Methods:
        process(targets, pred): Processes the targets and predictions to compute classification metrics.
    """

    def __init__(self) -> None:
        """Initialize a ClassifyMetrics instance."""
        self.top1 = 0
        self.top5 = 0
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
        self.task = "classify"

    def process(self, targets, pred):
        """Target classes and predicted classes."""
        pred, targets = torch.cat(pred), torch.cat(targets)
        correct = (targets[:, None] == pred).float()
        acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1)  # (top1, top5) accuracy
        self.top1, self.top5 = acc.mean(0).tolist()

    @property
    def fitness(self):
        """Returns mean of top-1 and top-5 accuracies as fitness score."""
        return (self.top1 + self.top5) / 2

    @property
    def results_dict(self):
        """Returns a dictionary with model's performance metrics and fitness score."""
        return dict(zip(self.keys + ["fitness"], [self.top1, self.top5, self.fitness]))

    @property
    def keys(self):
        """Returns a list of keys for the results_dict property."""
        return ["metrics/accuracy_top1", "metrics/accuracy_top5"]

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []

    @property
    def curves_results(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []


class OBBMetrics(SimpleClass):
    def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None:
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}

    def process(self, tp, conf, pred_cls, target_cls):
        """Process predicted results for object detection and update metrics."""
        results = ap_per_class(
            tp,
            conf,
            pred_cls,
            target_cls,
            plot=self.plot,
            save_dir=self.save_dir,
            names=self.names,
            on_plot=self.on_plot,
        )[2:]
        self.box.nc = len(self.names)
        self.box.update(results)

    @property
    def keys(self):
        """Returns a list of keys for accessing specific metrics."""
        return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"]

    def mean_results(self):
        """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
        return self.box.mean_results()

    def class_result(self, i):
        """Return the result of evaluating the performance of an object detection model on a specific class."""
        return self.box.class_result(i)

    @property
    def maps(self):
        """Returns mean Average Precision (mAP) scores per class."""
        return self.box.maps

    @property
    def fitness(self):
        """Returns the fitness of box object."""
        return self.box.fitness()

    @property
    def ap_class_index(self):
        """Returns the average precision index per class."""
        return self.box.ap_class_index

    @property
    def results_dict(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness]))

    @property
    def curves(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []

    @property
    def curves_results(self):
        """Returns a list of curves for accessing specific metrics curves."""
        return []
  • ② ultralytics/utils/loss.py
# Ultralytics YOLO 🚀, AGPL-3.0 license

import torch
import torch.nn as nn
import torch.nn.functional as F

from ultralytics.utils.metrics import OKS_SIGMA
from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.utils.tal import RotatedTaskAlignedAssigner, TaskAlignedAssigner, dist2bbox, dist2rbox, make_anchors
from .metrics import bbox_iou, probiou
from .tal import bbox2dist


class VarifocalLoss(nn.Module):
    """
    Varifocal loss by Zhang et al.

    https://arxiv.org/abs/2008.13367.
    """

    def __init__(self):
        """Initialize the VarifocalLoss class."""
        super().__init__()

    @staticmethod
    def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        """Computes varfocal loss."""
        weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
        with torch.cuda.amp.autocast(enabled=False):
            loss = (
                (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction="none") * weight)
                .mean(1)
                .sum()
            )
        return loss


class FocalLoss(nn.Module):
    """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""

    def __init__(self):
        """Initializer for FocalLoss class with no parameters."""
        super().__init__()

    @staticmethod
    def forward(pred, label, gamma=1.5, alpha=0.25):
        """Calculates and updates confusion matrix for object detection/classification tasks."""
        loss = F.binary_cross_entropy_with_logits(pred, label, reduction="none")
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = pred.sigmoid()  # prob from logits
        p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
        modulating_factor = (1.0 - p_t) ** gamma
        loss *= modulating_factor
        if alpha > 0:
            alpha_factor = label * alpha + (1 - label) * (1 - alpha)
            loss *= alpha_factor
        return loss.mean(1).sum()


class BboxLoss(nn.Module):
    """Criterion class for computing training losses during training."""

    def __init__(self, reg_max, use_dfl=False):
        """Initialize the BboxLoss module with regularization maximum and DFL settings."""
        super().__init__()
        self.reg_max = reg_max
        self.use_dfl = use_dfl

    def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
        """IoU loss."""
        weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
        iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, 
					   GIoU=False, DIoU=False, CIoU=True, SIoU=False, EIoU=False, 
					   WIoU=False, MPDIoU=False, LMPDIoU=False, Inner=True, Focal=True)
        # loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
        if type(iou) is tuple:
            if len(iou) == 2:
                # 针对Focus Loss的特殊处理,得到的元组类型进行额外处理
                loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum
            else:
                loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sum
        else:
            loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
        # DFL loss
        if self.use_dfl:
            target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
            loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
            loss_dfl = loss_dfl.sum() / target_scores_sum
        else:
            loss_dfl = torch.tensor(0.0).to(pred_dist.device)

        return loss_iou, loss_dfl

    @staticmethod
    def _df_loss(pred_dist, target):
        """
        Return sum of left and right DFL losses.

        Distribution Focal Loss (DFL) proposed in Generalized Focal Loss
        https://ieeexplore.ieee.org/document/9792391
        """
        tl = target.long()  # target left
        tr = tl + 1  # target right
        wl = tr - target  # weight left
        wr = 1 - wl  # weight right
        return (
            F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl
            + F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr
        ).mean(-1, keepdim=True)


class RotatedBboxLoss(BboxLoss):
    """Criterion class for computing training losses during training."""

    def __init__(self, reg_max, use_dfl=False):
        """Initialize the BboxLoss module with regularization maximum and DFL settings."""
        super().__init__(reg_max, use_dfl)

    def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
        """IoU loss."""
        weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
        iou = probiou(pred_bboxes[fg_mask], target_bboxes[fg_mask])
        loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

        # DFL loss
        if self.use_dfl:
            target_ltrb = bbox2dist(anchor_points, xywh2xyxy(target_bboxes[..., :4]), self.reg_max)
            loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
            loss_dfl = loss_dfl.sum() / target_scores_sum
        else:
            loss_dfl = torch.tensor(0.0).to(pred_dist.device)

        return loss_iou, loss_dfl


class KeypointLoss(nn.Module):
    """Criterion class for computing training losses."""

    def __init__(self, sigmas) -> None:
        """Initialize the KeypointLoss class."""
        super().__init__()
        self.sigmas = sigmas

    def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
        """Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
        d = (pred_kpts[..., 0] - gt_kpts[..., 0]).pow(2) + (pred_kpts[..., 1] - gt_kpts[..., 1]).pow(2)
        kpt_loss_factor = kpt_mask.shape[1] / (torch.sum(kpt_mask != 0, dim=1) + 1e-9)
        # e = d / (2 * (area * self.sigmas) ** 2 + 1e-9)  # from formula
        e = d / ((2 * self.sigmas).pow(2) * (area + 1e-9) * 2)  # from cocoeval
        return (kpt_loss_factor.view(-1, 1) * ((1 - torch.exp(-e)) * kpt_mask)).mean()


class v8DetectionLoss:
    """Criterion class for computing training losses."""

    def __init__(self, model):  # model must be de-paralleled
        """Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function."""
        device = next(model.parameters()).device  # get model device
        h = model.args  # hyperparameters

        m = model.model[-1]  # Detect() module
        self.bce = nn.BCEWithLogitsLoss(reduction="none")
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.no = m.nc + m.reg_max * 4
        self.reg_max = m.reg_max
        self.device = device

        self.use_dfl = m.reg_max > 1

        self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
        self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)

    def preprocess(self, targets, batch_size, scale_tensor):
        """Preprocesses the target counts and matches with the input batch size to output a tensor."""
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 5, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            counts = counts.to(dtype=torch.int32)
            out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    out[j, :n] = targets[matches, 1:]
            out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
        return out

    def bbox_decode(self, anchor_points, pred_dist):
        """Decode predicted object bounding box coordinates from anchor points and distribution."""
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
        return dist2bbox(pred_dist, anchor_points, xywh=False)

    def __call__(self, preds, batch):
        """Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
        loss = torch.zeros(3, device=self.device)  # box, cls, dfl
        feats = preds[1] if isinstance(preds, tuple) else preds
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1
        )

        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        batch_size = pred_scores.shape[0]
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # Targets
        targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
        targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
        gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
        mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)

        # Pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)

        _, target_bboxes, target_scores, fg_mask, _ = self.assigner(
            pred_scores.detach().sigmoid(),
            (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt,
        )

        target_scores_sum = max(target_scores.sum(), 1)

        # Cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # Bbox loss
        if fg_mask.sum():
            target_bboxes /= stride_tensor
            loss[0], loss[2] = self.bbox_loss(
                pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
            )

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.cls  # cls gain
        loss[2] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)


class v8SegmentationLoss(v8DetectionLoss):
    """Criterion class for computing training losses."""

    def __init__(self, model):  # model must be de-paralleled
        """Initializes the v8SegmentationLoss class, taking a de-paralleled model as argument."""
        super().__init__(model)
        self.overlap = model.args.overlap_mask

    def __call__(self, preds, batch):
        """Calculate and return the loss for the YOLO model."""
        loss = torch.zeros(4, device=self.device)  # box, cls, dfl
        feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
        batch_size, _, mask_h, mask_w = proto.shape  # batch size, number of masks, mask height, mask width
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1
        )

        # B, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_masks = pred_masks.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # Targets
        try:
            batch_idx = batch["batch_idx"].view(-1, 1)
            targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError(
                "ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n"
                "This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
                "i.e. 'yolo train model=yolov8n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
                "correctly formatted 'segment' dataset using 'data=coco8-seg.yaml' "
                "as an example.\nSee https://docs.ultralytics.com/datasets/segment/ for help."
            ) from e

        # Pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)

        _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores.detach().sigmoid(),
            (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt,
        )

        target_scores_sum = max(target_scores.sum(), 1)

        # Cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        if fg_mask.sum():
            # Bbox loss
            loss[0], loss[3] = self.bbox_loss(
                pred_distri,
                pred_bboxes,
                anchor_points,
                target_bboxes / stride_tensor,
                target_scores,
                target_scores_sum,
                fg_mask,
            )
            # Masks loss
            masks = batch["masks"].to(self.device).float()
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]

            loss[1] = self.calculate_segmentation_loss(
                fg_mask, masks, target_gt_idx, target_bboxes, batch_idx, proto, pred_masks, imgsz, self.overlap
            )

        # WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
        else:
            loss[1] += (proto * 0).sum() + (pred_masks * 0).sum()  # inf sums may lead to nan loss

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.box  # seg gain
        loss[2] *= self.hyp.cls  # cls gain
        loss[3] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    @staticmethod
    def single_mask_loss(
        gt_mask: torch.Tensor, pred: torch.Tensor, proto: torch.Tensor, xyxy: torch.Tensor, area: torch.Tensor
    ) -> torch.Tensor:
        """
        Compute the instance segmentation loss for a single image.

        Args:
            gt_mask (torch.Tensor): Ground truth mask of shape (n, H, W), where n is the number of objects.
            pred (torch.Tensor): Predicted mask coefficients of shape (n, 32).
            proto (torch.Tensor): Prototype masks of shape (32, H, W).
            xyxy (torch.Tensor): Ground truth bounding boxes in xyxy format, normalized to [0, 1], of shape (n, 4).
            area (torch.Tensor): Area of each ground truth bounding box of shape (n,).

        Returns:
            (torch.Tensor): The calculated mask loss for a single image.

        Notes:
            The function uses the equation pred_mask = torch.einsum('in,nhw->ihw', pred, proto) to produce the
            predicted masks from the prototype masks and predicted mask coefficients.
        """
        pred_mask = torch.einsum("in,nhw->ihw", pred, proto)  # (n, 32) @ (32, 80, 80) -> (n, 80, 80)
        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).sum()

    def calculate_segmentation_loss(
        self,
        fg_mask: torch.Tensor,
        masks: torch.Tensor,
        target_gt_idx: torch.Tensor,
        target_bboxes: torch.Tensor,
        batch_idx: torch.Tensor,
        proto: torch.Tensor,
        pred_masks: torch.Tensor,
        imgsz: torch.Tensor,
        overlap: bool,
    ) -> torch.Tensor:
        """
        Calculate the loss for instance segmentation.

        Args:
            fg_mask (torch.Tensor): A binary tensor of shape (BS, N_anchors) indicating which anchors are positive.
            masks (torch.Tensor): Ground truth masks of shape (BS, H, W) if `overlap` is False, otherwise (BS, ?, H, W).
            target_gt_idx (torch.Tensor): Indexes of ground truth objects for each anchor of shape (BS, N_anchors).
            target_bboxes (torch.Tensor): Ground truth bounding boxes for each anchor of shape (BS, N_anchors, 4).
            batch_idx (torch.Tensor): Batch indices of shape (N_labels_in_batch, 1).
            proto (torch.Tensor): Prototype masks of shape (BS, 32, H, W).
            pred_masks (torch.Tensor): Predicted masks for each anchor of shape (BS, N_anchors, 32).
            imgsz (torch.Tensor): Size of the input image as a tensor of shape (2), i.e., (H, W).
            overlap (bool): Whether the masks in `masks` tensor overlap.

        Returns:
            (torch.Tensor): The calculated loss for instance segmentation.

        Notes:
            The batch loss can be computed for improved speed at higher memory usage.
            For example, pred_mask can be computed as follows:
                pred_mask = torch.einsum('in,nhw->ihw', pred, proto)  # (i, 32) @ (32, 160, 160) -> (i, 160, 160)
        """
        _, _, mask_h, mask_w = proto.shape
        loss = 0

        # Normalize to 0-1
        target_bboxes_normalized = target_bboxes / imgsz[[1, 0, 1, 0]]

        # Areas of target bboxes
        marea = xyxy2xywh(target_bboxes_normalized)[..., 2:].prod(2)

        # Normalize to mask size
        mxyxy = target_bboxes_normalized * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=proto.device)

        for i, single_i in enumerate(zip(fg_mask, target_gt_idx, pred_masks, proto, mxyxy, marea, masks)):
            fg_mask_i, target_gt_idx_i, pred_masks_i, proto_i, mxyxy_i, marea_i, masks_i = single_i
            if fg_mask_i.any():
                mask_idx = target_gt_idx_i[fg_mask_i]
                if overlap:
                    gt_mask = masks_i == (mask_idx + 1).view(-1, 1, 1)
                    gt_mask = gt_mask.float()
                else:
                    gt_mask = masks[batch_idx.view(-1) == i][mask_idx]

                loss += self.single_mask_loss(
                    gt_mask, pred_masks_i[fg_mask_i], proto_i, mxyxy_i[fg_mask_i], marea_i[fg_mask_i]
                )

            # WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
            else:
                loss += (proto * 0).sum() + (pred_masks * 0).sum()  # inf sums may lead to nan loss

        return loss / fg_mask.sum()


class v8PoseLoss(v8DetectionLoss):
    """Criterion class for computing training losses."""

    def __init__(self, model):  # model must be de-paralleled
        """Initializes v8PoseLoss with model, sets keypoint variables and declares a keypoint loss instance."""
        super().__init__(model)
        self.kpt_shape = model.model[-1].kpt_shape
        self.bce_pose = nn.BCEWithLogitsLoss()
        is_pose = self.kpt_shape == [17, 3]
        nkpt = self.kpt_shape[0]  # number of keypoints
        sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
        self.keypoint_loss = KeypointLoss(sigmas=sigmas)

    def __call__(self, preds, batch):
        """Calculate the total loss and detach it."""
        loss = torch.zeros(5, device=self.device)  # box, cls, dfl, kpt_location, kpt_visibility
        feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1
        )

        # B, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # Targets
        batch_size = pred_scores.shape[0]
        batch_idx = batch["batch_idx"].view(-1, 1)
        targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
        targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
        gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
        mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)

        # Pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)
        pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape))  # (b, h*w, 17, 3)

        _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores.detach().sigmoid(),
            (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt,
        )

        target_scores_sum = max(target_scores.sum(), 1)

        # Cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # Bbox loss
        if fg_mask.sum():
            target_bboxes /= stride_tensor
            loss[0], loss[4] = self.bbox_loss(
                pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
            )
            keypoints = batch["keypoints"].to(self.device).float().clone()
            keypoints[..., 0] *= imgsz[1]
            keypoints[..., 1] *= imgsz[0]

            loss[1], loss[2] = self.calculate_keypoints_loss(
                fg_mask, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
            )

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.pose  # pose gain
        loss[2] *= self.hyp.kobj  # kobj gain
        loss[3] *= self.hyp.cls  # cls gain
        loss[4] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    @staticmethod
    def kpts_decode(anchor_points, pred_kpts):
        """Decodes predicted keypoints to image coordinates."""
        y = pred_kpts.clone()
        y[..., :2] *= 2.0
        y[..., 0] += anchor_points[:, [0]] - 0.5
        y[..., 1] += anchor_points[:, [1]] - 0.5
        return y

    def calculate_keypoints_loss(
        self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
    ):
        """
        Calculate the keypoints loss for the model.

        This function calculates the keypoints loss and keypoints object loss for a given batch. The keypoints loss is
        based on the difference between the predicted keypoints and ground truth keypoints. The keypoints object loss is
        a binary classification loss that classifies whether a keypoint is present or not.

        Args:
            masks (torch.Tensor): Binary mask tensor indicating object presence, shape (BS, N_anchors).
            target_gt_idx (torch.Tensor): Index tensor mapping anchors to ground truth objects, shape (BS, N_anchors).
            keypoints (torch.Tensor): Ground truth keypoints, shape (N_kpts_in_batch, N_kpts_per_object, kpts_dim).
            batch_idx (torch.Tensor): Batch index tensor for keypoints, shape (N_kpts_in_batch, 1).
            stride_tensor (torch.Tensor): Stride tensor for anchors, shape (N_anchors, 1).
            target_bboxes (torch.Tensor): Ground truth boxes in (x1, y1, x2, y2) format, shape (BS, N_anchors, 4).
            pred_kpts (torch.Tensor): Predicted keypoints, shape (BS, N_anchors, N_kpts_per_object, kpts_dim).

        Returns:
            (tuple): Returns a tuple containing:
                - kpts_loss (torch.Tensor): The keypoints loss.
                - kpts_obj_loss (torch.Tensor): The keypoints object loss.
        """
        batch_idx = batch_idx.flatten()
        batch_size = len(masks)

        # Find the maximum number of keypoints in a single image
        max_kpts = torch.unique(batch_idx, return_counts=True)[1].max()

        # Create a tensor to hold batched keypoints
        batched_keypoints = torch.zeros(
            (batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]), device=keypoints.device
        )

        # TODO: any idea how to vectorize this?
        # Fill batched_keypoints with keypoints based on batch_idx
        for i in range(batch_size):
            keypoints_i = keypoints[batch_idx == i]
            batched_keypoints[i, : keypoints_i.shape[0]] = keypoints_i

        # Expand dimensions of target_gt_idx to match the shape of batched_keypoints
        target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1)

        # Use target_gt_idx_expanded to select keypoints from batched_keypoints
        selected_keypoints = batched_keypoints.gather(
            1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2])
        )

        # Divide coordinates by stride
        selected_keypoints /= stride_tensor.view(1, -1, 1, 1)

        kpts_loss = 0
        kpts_obj_loss = 0

        if masks.any():
            gt_kpt = selected_keypoints[masks]
            area = xyxy2xywh(target_bboxes[masks])[:, 2:].prod(1, keepdim=True)
            pred_kpt = pred_kpts[masks]
            kpt_mask = gt_kpt[..., 2] != 0 if gt_kpt.shape[-1] == 3 else torch.full_like(gt_kpt[..., 0], True)
            kpts_loss = self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area)  # pose loss

            if pred_kpt.shape[-1] == 3:
                kpts_obj_loss = self.bce_pose(pred_kpt[..., 2], kpt_mask.float())  # keypoint obj loss

        return kpts_loss, kpts_obj_loss


class v8ClassificationLoss:
    """Criterion class for computing training losses."""

    def __call__(self, preds, batch):
        """Compute the classification loss between predictions and true labels."""
        loss = torch.nn.functional.cross_entropy(preds, batch["cls"], reduction="mean")
        loss_items = loss.detach()
        return loss, loss_items


class v8OBBLoss(v8DetectionLoss):
    def __init__(self, model):
        """
        Initializes v8OBBLoss with model, assigner, and rotated bbox loss.

        Note model must be de-paralleled.
        """
        super().__init__(model)
        self.assigner = RotatedTaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
        self.bbox_loss = RotatedBboxLoss(self.reg_max - 1, use_dfl=self.use_dfl).to(self.device)

    def preprocess(self, targets, batch_size, scale_tensor):
        """Preprocesses the target counts and matches with the input batch size to output a tensor."""
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 6, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            counts = counts.to(dtype=torch.int32)
            out = torch.zeros(batch_size, counts.max(), 6, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    bboxes = targets[matches, 2:]
                    bboxes[..., :4].mul_(scale_tensor)
                    out[j, :n] = torch.cat([targets[matches, 1:2], bboxes], dim=-1)
        return out

    def __call__(self, preds, batch):
        """Calculate and return the loss for the YOLO model."""
        loss = torch.zeros(3, device=self.device)  # box, cls, dfl
        feats, pred_angle = preds if isinstance(preds[0], list) else preds[1]
        batch_size = pred_angle.shape[0]  # batch size, number of masks, mask height, mask width
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1
        )

        # b, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_angle = pred_angle.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        try:
            batch_idx = batch["batch_idx"].view(-1, 1)
            targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"].view(-1, 5)), 1)
            rw, rh = targets[:, 4] * imgsz[0].item(), targets[:, 5] * imgsz[1].item()
            targets = targets[(rw >= 2) & (rh >= 2)]  # filter rboxes of tiny size to stabilize training
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 5), 2)  # cls, xywhr
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError(
                "ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n"
                "This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
                "i.e. 'yolo train model=yolov8n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
                "correctly formatted 'OBB' dataset using 'data=dota8.yaml' "
                "as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help."
            ) from e

        # Pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri, pred_angle)  # xyxy, (b, h*w, 4)

        bboxes_for_assigner = pred_bboxes.clone().detach()
        # Only the first four elements need to be scaled
        bboxes_for_assigner[..., :4] *= stride_tensor
        _, target_bboxes, target_scores, fg_mask, _ = self.assigner(
            pred_scores.detach().sigmoid(),
            bboxes_for_assigner.type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt,
        )

        target_scores_sum = max(target_scores.sum(), 1)

        # Cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # Bbox loss
        if fg_mask.sum():
            target_bboxes[..., :4] /= stride_tensor
            loss[0], loss[2] = self.bbox_loss(
                pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
            )
        else:
            loss[0] += (pred_angle * 0).sum()

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.cls  # cls gain
        loss[2] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    def bbox_decode(self, anchor_points, pred_dist, pred_angle):
        """
        Decode predicted object bounding box coordinates from anchor points and distribution.

        Args:
            anchor_points (torch.Tensor): Anchor points, (h*w, 2).
            pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4).
            pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1).

        Returns:
            (torch.Tensor): Predicted rotated bounding boxes with angles, (bs, h*w, 5).
        """
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
        return torch.cat((dist2rbox(pred_dist, pred_angle, anchor_points), pred_angle), dim=-1)
  • ③ ultralytics/utils/tal.py
# Ultralytics YOLO 🚀, AGPL-3.0 license

import torch
import torch.nn as nn

from .checks import check_version
from .metrics import bbox_iou, probiou
from .ops import xywhr2xyxyxyxy

TORCH_1_10 = check_version(torch.__version__, "1.10.0")


class TaskAlignedAssigner(nn.Module):
    """
    A task-aligned assigner for object detection.

    This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric, which combines both
    classification and localization information.

    Attributes:
        topk (int): The number of top candidates to consider.
        num_classes (int): The number of object classes.
        alpha (float): The alpha parameter for the classification component of the task-aligned metric.
        beta (float): The beta parameter for the localization component of the task-aligned metric.
        eps (float): A small value to prevent division by zero.
    """

    def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):
        """Initialize a TaskAlignedAssigner object with customizable hyperparameters."""
        super().__init__()
        self.topk = topk
        self.num_classes = num_classes
        self.bg_idx = num_classes
        self.alpha = alpha
        self.beta = beta
        self.eps = eps

    @torch.no_grad()
    def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
        """
        Compute the task-aligned assignment. Reference code is available at
        https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py.

        Args:
            pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
            pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
            anc_points (Tensor): shape(num_total_anchors, 2)
            gt_labels (Tensor): shape(bs, n_max_boxes, 1)
            gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
            mask_gt (Tensor): shape(bs, n_max_boxes, 1)

        Returns:
            target_labels (Tensor): shape(bs, num_total_anchors)
            target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
            target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
            fg_mask (Tensor): shape(bs, num_total_anchors)
            target_gt_idx (Tensor): shape(bs, num_total_anchors)
        """
        self.bs = pd_scores.shape[0]
        self.n_max_boxes = gt_bboxes.shape[1]

        if self.n_max_boxes == 0:
            device = gt_bboxes.device
            return (
                torch.full_like(pd_scores[..., 0], self.bg_idx).to(device),
                torch.zeros_like(pd_bboxes).to(device),
                torch.zeros_like(pd_scores).to(device),
                torch.zeros_like(pd_scores[..., 0]).to(device),
                torch.zeros_like(pd_scores[..., 0]).to(device),
            )

        mask_pos, align_metric, overlaps = self.get_pos_mask(
            pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt
        )

        target_gt_idx, fg_mask, mask_pos = self.select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)

        # Assigned target
        target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)

        # Normalize
        align_metric *= mask_pos
        pos_align_metrics = align_metric.amax(dim=-1, keepdim=True)  # b, max_num_obj
        pos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True)  # b, max_num_obj
        norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
        target_scores = target_scores * norm_align_metric

        return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx

    def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
        """Get in_gts mask, (b, max_num_obj, h*w)."""
        mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes)
        # Get anchor_align metric, (b, max_num_obj, h*w)
        align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)
        # Get topk_metric mask, (b, max_num_obj, h*w)
        mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())
        # Merge all mask to a final mask, (b, max_num_obj, h*w)
        mask_pos = mask_topk * mask_in_gts * mask_gt

        return mask_pos, align_metric, overlaps

    def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt):
        """Compute alignment metric given predicted and ground truth bounding boxes."""
        na = pd_bboxes.shape[-2]
        mask_gt = mask_gt.bool()  # b, max_num_obj, h*w
        overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)
        bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)

        ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long)  # 2, b, max_num_obj
        ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes)  # b, max_num_obj
        ind[1] = gt_labels.squeeze(-1)  # b, max_num_obj
        # Get the scores of each grid for each gt cls
        bbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt]  # b, max_num_obj, h*w

        # (b, max_num_obj, 1, 4), (b, 1, h*w, 4)
        pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt]
        gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt]
        overlaps[mask_gt] = bbox_iou(gt_boxes, pd_boxes, xywh=False, 
									 GIoU=False, DIoU=False, CIoU=True, SIoU=False, EIoU=False, 
									 WIoU=False, MPDIoU=False, LMPDIoU=False, Inner=True, Focal=False).squeeze(-1).clamp_(0)

        align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
        return align_metric, overlaps

    def iou_calculation(self, gt_bboxes, pd_bboxes):
        """IoU calculation for horizontal bounding boxes."""
        return bbox_iou(gt_bboxes, pd_bboxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)

    def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
        """
        Select the top-k candidates based on the given metrics.

        Args:
            metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size,
                              max_num_obj is the maximum number of objects, and h*w represents the
                              total number of anchor points.
            largest (bool): If True, select the largest values; otherwise, select the smallest values.
            topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), where
                                topk is the number of top candidates to consider. If not provided,
                                the top-k values are automatically computed based on the given metrics.

        Returns:
            (Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates.
        """

        # (b, max_num_obj, topk)
        topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)
        if topk_mask is None:
            topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)
        # (b, max_num_obj, topk)
        topk_idxs.masked_fill_(~topk_mask, 0)

        # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
        count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)
        ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)
        for k in range(self.topk):
            # Expand topk_idxs for each value of k and add 1 at the specified positions
            count_tensor.scatter_add_(-1, topk_idxs[:, :, k : k + 1], ones)
        # count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))
        # Filter invalid bboxes
        count_tensor.masked_fill_(count_tensor > 1, 0)

        return count_tensor.to(metrics.dtype)

    def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
        """
        Compute target labels, target bounding boxes, and target scores for the positive anchor points.

        Args:
            gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is the
                                batch size and max_num_obj is the maximum number of objects.
            gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4).
            target_gt_idx (Tensor): Indices of the assigned ground truth objects for positive
                                    anchor points, with shape (b, h*w), where h*w is the total
                                    number of anchor points.
            fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive
                              (foreground) anchor points.

        Returns:
            (Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors:
                - target_labels (Tensor): Shape (b, h*w), containing the target labels for
                                          positive anchor points.
                - target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxes
                                          for positive anchor points.
                - target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scores
                                          for positive anchor points, where num_classes is the number
                                          of object classes.
        """

        # Assigned target labels, (b, 1)
        batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
        target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes  # (b, h*w)
        target_labels = gt_labels.long().flatten()[target_gt_idx]  # (b, h*w)

        # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)
        target_bboxes = gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_gt_idx]

        # Assigned target scores
        target_labels.clamp_(0)

        # 10x faster than F.one_hot()
        target_scores = torch.zeros(
            (target_labels.shape[0], target_labels.shape[1], self.num_classes),
            dtype=torch.int64,
            device=target_labels.device,
        )  # (b, h*w, 80)
        target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)

        fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes)  # (b, h*w, 80)
        target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)

        return target_labels, target_bboxes, target_scores

    @staticmethod
    def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
        """
        Select the positive anchor center in gt.

        Args:
            xy_centers (Tensor): shape(h*w, 2)
            gt_bboxes (Tensor): shape(b, n_boxes, 4)

        Returns:
            (Tensor): shape(b, n_boxes, h*w)
        """
        n_anchors = xy_centers.shape[0]
        bs, n_boxes, _ = gt_bboxes.shape
        lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2)  # left-top, right-bottom
        bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
        # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)
        return bbox_deltas.amin(3).gt_(eps)

    @staticmethod
    def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
        """
        If an anchor box is assigned to multiple gts, the one with the highest IoU will be selected.

        Args:
            mask_pos (Tensor): shape(b, n_max_boxes, h*w)
            overlaps (Tensor): shape(b, n_max_boxes, h*w)

        Returns:
            target_gt_idx (Tensor): shape(b, h*w)
            fg_mask (Tensor): shape(b, h*w)
            mask_pos (Tensor): shape(b, n_max_boxes, h*w)
        """
        # (b, n_max_boxes, h*w) -> (b, h*w)
        fg_mask = mask_pos.sum(-2)
        if fg_mask.max() > 1:  # one anchor is assigned to multiple gt_bboxes
            mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1)  # (b, n_max_boxes, h*w)
            max_overlaps_idx = overlaps.argmax(1)  # (b, h*w)

            is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
            is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)

            mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float()  # (b, n_max_boxes, h*w)
            fg_mask = mask_pos.sum(-2)
        # Find each grid serve which gt(index)
        target_gt_idx = mask_pos.argmax(-2)  # (b, h*w)
        return target_gt_idx, fg_mask, mask_pos


class RotatedTaskAlignedAssigner(TaskAlignedAssigner):
    def iou_calculation(self, gt_bboxes, pd_bboxes):
        """IoU calculation for rotated bounding boxes."""
        return probiou(gt_bboxes, pd_bboxes).squeeze(-1).clamp_(0)

    @staticmethod
    def select_candidates_in_gts(xy_centers, gt_bboxes):
        """
        Select the positive anchor center in gt for rotated bounding boxes.

        Args:
            xy_centers (Tensor): shape(h*w, 2)
            gt_bboxes (Tensor): shape(b, n_boxes, 5)

        Returns:
            (Tensor): shape(b, n_boxes, h*w)
        """
        # (b, n_boxes, 5) --> (b, n_boxes, 4, 2)
        corners = xywhr2xyxyxyxy(gt_bboxes)
        # (b, n_boxes, 1, 2)
        a, b, _, d = corners.split(1, dim=-2)
        ab = b - a
        ad = d - a

        # (b, n_boxes, h*w, 2)
        ap = xy_centers - a
        norm_ab = (ab * ab).sum(dim=-1)
        norm_ad = (ad * ad).sum(dim=-1)
        ap_dot_ab = (ap * ab).sum(dim=-1)
        ap_dot_ad = (ap * ad).sum(dim=-1)
        return (ap_dot_ab >= 0) & (ap_dot_ab <= norm_ab) & (ap_dot_ad >= 0) & (ap_dot_ad <= norm_ad)  # is_in_box


def make_anchors(feats, strides, grid_cell_offset=0.5):
    """Generate anchors from features."""
    anchor_points, stride_tensor = [], []
    assert feats is not None
    dtype, device = feats[0].dtype, feats[0].device
    for i, stride in enumerate(strides):
        _, _, h, w = feats[i].shape
        sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset  # shift x
        sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset  # shift y
        sy, sx = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx)
        anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2))
        stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device))
    return torch.cat(anchor_points), torch.cat(stride_tensor)


def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
    """Transform distance(ltrb) to box(xywh or xyxy)."""
    lt, rb = distance.chunk(2, dim)
    x1y1 = anchor_points - lt
    x2y2 = anchor_points + rb
    if xywh:
        c_xy = (x1y1 + x2y2) / 2
        wh = x2y2 - x1y1
        return torch.cat((c_xy, wh), dim)  # xywh bbox
    return torch.cat((x1y1, x2y2), dim)  # xyxy bbox


def bbox2dist(anchor_points, bbox, reg_max):
    """Transform bbox(xyxy) to dist(ltrb)."""
    x1y1, x2y2 = bbox.chunk(2, -1)
    return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp_(0, reg_max - 0.01)  # dist (lt, rb)


def dist2rbox(pred_dist, pred_angle, anchor_points, dim=-1):
    """
    Decode predicted object bounding box coordinates from anchor points and distribution.

    Args:
        pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4).
        pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1).
        anchor_points (torch.Tensor): Anchor points, (h*w, 2).
    Returns:
        (torch.Tensor): Predicted rotated bounding boxes, (bs, h*w, 4).
    """
    lt, rb = pred_dist.split(2, dim=dim)
    cos, sin = torch.cos(pred_angle), torch.sin(pred_angle)
    # (bs, h*w, 1)
    xf, yf = ((rb - lt) / 2).split(1, dim=dim)
    x, y = xf * cos - yf * sin, xf * sin + yf * cos
    xy = torch.cat([x, y], dim=dim) + anchor_points
    return torch.cat([xy, lt + rb], dim=dim)

到此,本文分享的内容就结束啦!遇见便是缘,感恩遇见!!!💛 💙 💜 ❤️ 💚

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/551566.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

服务器中毒怎么办?企业数据安全需重视

互联网企业&#xff1a; 广义的互联网企业是指以计算机网络技术为基础&#xff0c;利用网络平台提供服务并因此获得收入的企业。广义的互联网企业可以分为:基础层互联网企业、服务层互联网企业、终端层互联网企业。 狭义的互联网企业是指在互联网上注册域名&#xff0c;建立网…

11.基础乐理-音域、1=C到底是那一组的C

音域&#xff1a; 音域它指的是一个乐器&#xff08;包括人声&#xff09;&#xff0c;能发出的所有的音高总&#xff0c;比如我们拿钢琴来看&#xff0c;钢琴最低的是大字二组的A2&#xff0c; 钢琴最高音是小字五组的c5&#xff0c;钢琴的音域是A2 - c5&#xff0c;如图1所示…

数字次数排序-第12届蓝桥杯省赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第53讲。 数字次数排序&…

软硬链接与动静态库

文章目录 1.软硬链接2.动态库和静态库2.1 见一见库2.2 动静态库2.2.1 静态库2.2.2 动态库 2.3 动静态库的对比 3.真实的应用场景(ncurses库)4.库加载---可执行程序和地址空间4.1可执行程序的加载4.2 库的加载 1.软硬链接 2.动态库和静态库 2.1 见一见库 我们用过很多库。C/C的…

Pytorch官方FlashAttention速度测试

在Pytorch的2.2版本更新文档中&#xff0c;官方重点强调了通过实现FlashAtteneion-v2实现了对scaled_dot_product_attention约2X左右的加速。 今天抽空亲自试了下&#xff0c;看看加速效果是否如官方所说。测试前需要将Pytorch的版本更新到2.2及以上&#xff0c;下面是测试代码…

企业数字化转型路径有哪些?

企业数字化转型是一个复杂而全面的过程&#xff0c;涉及到企业的多个方面&#xff0c;包括管理、运营、生产、销售等。企业数字化转型的路径可以概括为以下几个方面&#xff1a; 1、开展数字化评估 企业首先需要对自身的数字化基础水平、经营管理现状以及内外部转型资源进行全…

基于汇编代码和源代码融合的漏洞检测系统

这篇文章通过结合漏洞源代码和汇编代码的特征实现了一个漏洞检测系统。实现步骤如下&#xff1a;&#xff08;1&#xff09;从源代码和汇编代码中提取代码切片&#xff1b;&#xff08;2&#xff09;通过提出的代码对齐算法对这些片断进行对齐&#xff1b;&#xff08;3&#x…

2024 收入最高的十大编程语言预测

预测2024 收入最高的十大编程语言 在过去2023年,了解哪些编程语言能为开发者提供更高的薪水至关重要,目前全球已有超过200种编程语言可供选择.为了深入了解市场趋势和受欢迎程度,DevJobsScanner在过去一年里分析了全球超过1000万个开发职位空缺.尽管这项研究主要关注美国就业市…

LLM-01 大模型 本地部署运行 ChatGLM2-6B-INT4(6GB) 简单上手 环境配置 单机单卡多卡 2070Super8GBx2 打怪升级!

写在前面 其他显卡环境也可以&#xff01;但是最少要有8GB的显存&#xff0c;不然很容易爆。 如果有多显卡的话&#xff0c;单机多卡也是很好的方案&#xff01;&#xff01;&#xff01; 背景介绍 目前借到一台算法组的服务器&#xff0c;我们可以查看一下目前显卡的情况 …

【网站项目】学生选课系统小程序

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

前端开发攻略---在页面上渲染大量元素,使用defer减少白屏等待时间,优化页面响应速度

1、优化前 2、优化后 3、优化思路 1、在元素数量不变的情况下&#xff0c;进行一步一步的渲染&#xff0c;先渲染一些重要的元素或者需要用户第一时间看到的元素。 2、使用Hooks封装优化函数 4、优化代码 拥有大量元素的组件&#xff08;Item&#xff09;&#xff1a;文件位置&…

Clion自动添加函数标准注释模板

一、设置步骤 点击File->Settings&#xff1b;搜索Live Templates设置项&#xff0c;选择C/C子项&#xff0c;直接拷贝以下内容&#xff1a; <template name"func" value"/*** brief * param name * param value * return * retval * bug */" desc…

kkFileView文件预览服务详解

目录 一、介绍 二、地址 三、打包部署步骤 四、三种调用方式 五、在线体验 六、源码分析-设计思路实现 七、扩展新类型 八、遇到的问题 1.混合访问问题 2.邮件解析问题 3. Ng转发配置网站域名问题; 4.Office版本问题 5.指定时区: 6. Office相关(word,ppt,excel)转…

微前端 qiankun 框架接入问题记录

背景&#xff1a;需要搭建一个平台&#xff0c;这个平台的主要功能是集成各个子系统&#xff0c;方面对系统之间的统一管理。在搭建这样一个平台时&#xff0c;前端考虑使用微前端架构方式实现&#xff0c;使用的框架是 qiankun&#xff0c;本文主要记录在 qiankun 框架使用过程…

postman汉化

一、postman历史版本下载&#xff1a;Postman 10.24.16 Download for Windows / Old Versions / FileHorse.comhttps://www.filehorse.com/download-postman/old-versions/ 二、汉化包下载&#xff1a; Releases hlmd/Postman-cn GitHubPostman汉化中文版. Contribute to h…

弹性 MapReduce(EMR)

一.产品简介 1产品概述 E腾讯云 EMR 提供基于云服务器&#xff08;CVM&#xff09;和容器服务&#xff08;TKE&#xff09;两种部署运行方式&#xff1a; 2.Agent 的安装目录 Linux 安装目录是/usr/local/qcloud/stargate和/usr/local/qcloud/monitor CoreOs 安装目录是/va…

【Redis 神秘大陆】006 灾备方案

六、Redis 灾备方案 6.1 存储方案 6.1.1 基础对比 RDB持久化AOF持久化原理周期性fork子进程生成持久化文件每次写入记录命令日志文件类型二进制dump快照文件文本appendonly日志文件触发条件默认超过300s间隔且有1s内超过1kb数据变更永久性每秒fsync一次文件位置配置文件中指…

ECharts数据大屏展示效果

ECharts数据大屏展示效果 前言1、效果预览1.2、视频效果 2、使用框架3、如何处理屏幕自适应效果4、ECharts模块、dataV大屏插件 编写与布局5、往期回顾总结&#xff1a; 前言 数据大屏需整体效果好看&#xff0c;界面缩放自适应大小&#xff0c;全屏展示铺满整个屏幕并自适应&a…

Linux 指令之文件

1.开发背景 记录 linux 下对文件操作的指令 2.开发需求 记录常用的文件操作指令 3.开发环境 linux 操作系统&#xff0c;如果不支持需要查看是否存在对应的可执行文件 4.实现步骤 4.1 查找字符串 查找指定目录下包含指定的字符串 grep -rn "Timer frequency" .…

怎么在桌面上添加待办清单 好用的桌面待办清单工具

在这个信息爆炸的时代&#xff0c;我们每个人都像是身处信息的洪流中&#xff0c;稍有不慎就可能被淹没。我常常被各种琐事包围&#xff0c;需要完成的任务数不胜数&#xff0c;而大脑的内存似乎总是有限。有时&#xff0c;我甚至会忘记一些重要的事项&#xff0c;这让我感到非…