机器学习实验------决策树

第1关:什么是决策树

任务描述

本关任务:根据本节课所学知识完成本关所设置的选择题。

在这里插入图片描述

第2关:信息熵与信息增益

任务描述

本关任务:掌握什么是信息增益,完成计算信息增益的程序设计。



import numpy as np


def calcInfoGain(feature, label, index):
    '''
    计算信息增益
    :param feature:测试用例中字典里的feature,类型为ndarray
    :param label:测试用例中字典里的label,类型为ndarray
    :param index:测试用例中字典里的index,即feature部分特征列的索引。该索引指的是feature中第几个特征,如index:0表示使用第一个特征来计算信息增益。
    :return:信息增益,类型float
    '''

    #*********** Begin ***********#
    def total_cal(label):
        label_set = set(label)
        result = 0
        for i in label_set:
            p=list(label).count(i)/len(label)
            result-=p * np.log2(p)
        return result
    aba=[]
    length=[]
    for value in set(feature[:,index]):
        # num=feature[:,index].count(value)
        sub_label = []
        for i in range(len(feature)):
            if feature[i][index] == value:
                sub_label.append(label[i])
        aba.append(total_cal(sub_label))
        length.append(len(sub_label)/len(label))
    res=total_cal(label)-length[0]*aba[0]-length[1]*aba[1]
    return res
    #*********** End *************#

第3关:使用ID3算法构建决策树

任务描述

本关任务:补充python代码,完成DecisionTree类中的fit和predict函数。


import numpy as np
class DecisionTree(object):
    def __init__(self):
        #决策树模型
        self.tree = {}
    def calcInfoGain(self, feature, label, index):
        '''
        计算信息增益
        :param feature:测试用例中字典里的feature,类型为ndarray
        :param label:测试用例中字典里的label,类型为ndarray
        :param index:测试用例中字典里的index,即feature部分特征列的索引。该索引指的是feature中第几个特征,如index:0表示使用第一个特征来计算信息增益。
        :return:信息增益,类型float
        '''
        # 计算熵
        def calcInfoEntropy(label):
            '''
            计算信息熵
            :param label:数据集中的标签,类型为ndarray
            :return:信息熵,类型float
            '''
            label_set = set(label)
            result = 0
            for l in label_set:
                count = 0
                for j in range(len(label)):
                    if label[j] == l:
                        count += 1
                # 计算标签在数据集中出现的概率
                p = count / len(label)
                # 计算熵
                result -= p * np.log2(p)
            return result
        # 计算条件熵
        def calcHDA(feature, label, index, value):
            '''
            计算信息熵
            :param feature:数据集中的特征,类型为ndarray
            :param label:数据集中的标签,类型为ndarray
            :param index:需要使用的特征列索引,类型为int
            :param value:index所表示的特征列中需要考察的特征值,类型为int
            :return:信息熵,类型float
            '''
            count = 0
            # sub_feature和sub_label表示根据特征列和特征值分割出的子数据集中的特征和标签
            sub_feature = []
            sub_label = []
            for i in range(len(feature)):
                if feature[i][index] == value:
                    count += 1
                    sub_feature.append(feature[i])
                    sub_label.append(label[i])
            pHA = count / len(feature)
            e = calcInfoEntropy(sub_label)
            return pHA * e
        base_e = calcInfoEntropy(label)
        f = np.array(feature)
        # 得到指定特征列的值的集合
        f_set = set(f[:, index])
        sum_HDA = 0
        # 计算条件熵
        for value in f_set:
            sum_HDA += calcHDA(feature, label, index, value)
        # 计算信息增益
        return base_e - sum_HDA
    # 获得信息增益最高的特征
    def getBestFeature(self, feature, label):
        max_infogain = 0
        best_feature = 0
        for i in range(len(feature[0])):
            infogain = self.calcInfoGain(feature, label, i)
            if infogain > max_infogain:
                max_infogain = infogain
                best_feature = i
        return best_feature
    def createTree(self, feature, label):
        # 样本里都是同一个label没必要继续分叉了
        if len(set(label)) == 1:
            return label[0]
        # 样本中只有一个特征或者所有样本的特征都一样的话就看哪个label的票数高
        if len(feature[0]) == 1 or len(np.unique(feature, axis=0)) == 1:
            vote = {}
            for l in label:
                if l in vote.keys():
                    vote[l] += 1
                else:
                    vote[l] = 1
            max_count = 0
            vote_label = None
            for k, v in vote.items():
                if v > max_count:
                    max_count = v
                    vote_label = k
            return vote_label
        # 根据信息增益拿到特征的索引
        best_feature = self.getBestFeature(feature, label)
        tree = {best_feature: {}}
        f = np.array(feature)
        # 拿到bestfeature的所有特征值
        f_set = set(f[:, best_feature])
        # 构建对应特征值的子样本集sub_feature, sub_label
        for v in f_set:
            sub_feature = []
            sub_label = []
            for i in range(len(feature)):
                if feature[i][best_feature] == v:
                    sub_feature.append(feature[i])
                    sub_label.append(label[i])
            # 递归构建决策树
            tree[best_feature][v] = self.createTree(sub_feature, sub_label)
        return tree
    def fit(self, feature, label):
        '''
        :param feature: 训练集数据,类型为ndarray
        :param label:训练集标签,类型为ndarray
        :return: None
        '''
        #************* Begin ************#
        self.tree = self.createTree(feature, label)
        #************* End **************#
    def predict(self, feature):
        '''
        :param feature:测试集数据,类型为ndarray
        :return:预测结果,如np.array([0, 1, 2, 2, 1, 0])
        '''
        #************* Begin ************#
        result = []
        def classify(tree, feature):
            if not isinstance(tree, dict):
                return tree
            t_index, t_value = list(tree.items())[0]
            f_value = feature[t_index]
            if isinstance(t_value, dict):
                classLabel = classify(tree[t_index][f_value], feature)
                return classLabel
            else:
                return t_value
        for f in feature:
            result.append(classify(self.tree, f))
        return np.array(result)
 
 
        #************* End **************#

第4关:信息增益率

任务描述

本关任务:根据本关所学知识,完成calcInfoGainRatio函数。


import numpy as np
 
def calcInfoGain(feature, label, index):
    '''
    计算信息增益
    :param feature:测试用例中字典里的feature,类型为ndarray
    :param label:测试用例中字典里的label,类型为ndarray
    :param index:测试用例中字典里的index,即feature部分特征列的索引。该索引指的是feature中第几个特征,如index:0表示使用第一个特征来计算信息增益。
    :return:信息增益,类型float
    '''
    # 计算熵
    def calcInfoEntropy(label):
        '''
        计算信息熵
        :param label:数据集中的标签,类型为ndarray
        :return:信息熵,类型float
        '''
 
        label_set = set(label)
        result = 0
        for l in label_set:
            count = 0
            for j in range(len(label)):
                if label[j] == l:
                    count += 1
            # 计算标签在数据集中出现的概率
            p = count / len(label)
            # 计算熵
            result -= p * np.log2(p)
        return result
 
    # 计算条件熵
    def calcHDA(feature, label, index, value):
        '''
        计算信息熵
        :param feature:数据集中的特征,类型为ndarray
        :param label:数据集中的标签,类型为ndarray
        :param index:需要使用的特征列索引,类型为int
        :param value:index所表示的特征列中需要考察的特征值,类型为int
        :return:信息熵,类型float
        '''
        count = 0
        # sub_label表示根据特征列和特征值分割出的子数据集中的标签
        sub_label = []
        for i in range(len(feature)):
            if feature[i][index] == value:
                count += 1
                sub_label.append(label[i])
        pHA = count / len(feature)
        e = calcInfoEntropy(sub_label)
        return pHA * e
 
    base_e = calcInfoEntropy(label)
    f = np.array(feature)
    # 得到指定特征列的值的集合
    f_set = set(f[:, index])
    sum_HDA = 0
    # 计算条件熵
    for value in f_set:
        sum_HDA += calcHDA(feature, label, index, value)
    # 计算信息增益
    return base_e - sum_HDA
 
 
def calcInfoGainRatio(feature, label, index):
    '''
    计算信息增益率
    :param feature:测试用例中字典里的feature,类型为ndarray
    :param label:测试用例中字典里的label,类型为ndarray
    :param index:测试用例中字典里的index,即feature部分特征列的索引。该索引指的是feature中第几个特征,如index:0表示使用第一个特征来计算信息增益。
    :return:信息增益率,类型float
    '''
 
    #********* Begin *********#
    info_gain = calcInfoGain(feature, label, index)
    unique_value = list(set(feature[:, index]))
    IV = 0
    for value in unique_value:
        len_v = np.sum(feature[:, index] == value)
        IV -= (len_v/len(feature))*np.log2((len_v/len(feature)))
    return info_gain/IV
    #********* End *********#

第5关:基尼系数

任务描述

本关任务:根据本关所学知识,完成calcGini函数。



import numpy as np
 
def calcGini(feature, label, index):
    '''
    计算基尼系数
    :param feature:测试用例中字典里的feature,类型为ndarray
    :param label:测试用例中字典里的label,类型为ndarray
    :param index:测试用例中字典里的index,即feature部分特征列的索引。该索引指的是feature中第几个特征,如index:0表示使用第一个特征来计算信息增益。
    :return:基尼系数,类型float
    '''
 
    #********* Begin *********#
 
    def _gini(label):
        unique_label = list(set(label))
        gini = 1
        for l in unique_label:
            p = np.sum(label == l)/len(label)
            gini -= p**2
        return gini
    unique_value = list(set(feature[:, index]))
    gini = 0
    for value in unique_value:
        len_v = np.sum(feature[:, index] == value)
        gini += (len_v/len(feature))*_gini(label[feature[:, index] == value])
    return gini
    #********* End *********#

第6关:预剪枝与后剪枝

任务描述

本关任务:补充python代码,完成DecisionTree类中的fit和predict函数。

import numpy as np
from copy import deepcopy
class DecisionTree(object):
    def __init__(self):
        #决策树模型
        self.tree = {}
    def calcInfoGain(self, feature, label, index):
        '''
        计算信息增益
        :param feature:测试用例中字典里的feature,类型为ndarray
        :param label:测试用例中字典里的label,类型为ndarray
        :param index:测试用例中字典里的index,即feature部分特征列的索引。该索引指的是feature中第几个特征,如index:0表示使用第一个特征来计算信息增益。
        :return:信息增益,类型float
        '''
        # 计算熵
        def calcInfoEntropy(feature, label):
            '''
            计算信息熵
            :param feature:数据集中的特征,类型为ndarray
            :param label:数据集中的标签,类型为ndarray
            :return:信息熵,类型float
            '''
            label_set = set(label)
            result = 0
            for l in label_set:
                count = 0
                for j in range(len(label)):
                    if label[j] == l:
                        count += 1
                # 计算标签在数据集中出现的概率
                p = count / len(label)
                # 计算熵
                result -= p * np.log2(p)
            return result
        # 计算条件熵
        def calcHDA(feature, label, index, value):
            '''
            计算信息熵
            :param feature:数据集中的特征,类型为ndarray
            :param label:数据集中的标签,类型为ndarray
            :param index:需要使用的特征列索引,类型为int
            :param value:index所表示的特征列中需要考察的特征值,类型为int
            :return:信息熵,类型float
            '''
            count = 0
            # sub_feature和sub_label表示根据特征列和特征值分割出的子数据集中的特征和标签
            sub_feature = []
            sub_label = []
            for i in range(len(feature)):
                if feature[i][index] == value:
                    count += 1
                    sub_feature.append(feature[i])
                    sub_label.append(label[i])
            pHA = count / len(feature)
            e = calcInfoEntropy(sub_feature, sub_label)
            return pHA * e
        base_e = calcInfoEntropy(feature, label)
        f = np.array(feature)
        # 得到指定特征列的值的集合
        f_set = set(f[:, index])
        sum_HDA = 0
        # 计算条件熵
        for value in f_set:
            sum_HDA += calcHDA(feature, label, index, value)
        # 计算信息增益
        return base_e - sum_HDA
    # 获得信息增益最高的特征
    def getBestFeature(self, feature, label):
        max_infogain = 0
        best_feature = 0
        for i in range(len(feature[0])):
            infogain = self.calcInfoGain(feature, label, i)
            if infogain > max_infogain:
                max_infogain = infogain
                best_feature = i
        return best_feature
    # 计算验证集准确率
    def calc_acc_val(self, the_tree, val_feature, val_label):
        result = []
        def classify(tree, feature):
            if not isinstance(tree, dict):
                return tree
            t_index, t_value = list(tree.items())[0]
            f_value = feature[t_index]
            if isinstance(t_value, dict):
                classLabel = classify(tree[t_index][f_value], feature)
                return classLabel
            else:
                return t_value
        for f in val_feature:
            result.append(classify(the_tree, f))
        result = np.array(result)
        return np.mean(result == val_label)
    def createTree(self, train_feature, train_label):
        # 样本里都是同一个label没必要继续分叉了
        if len(set(train_label)) == 1:
            return train_label[0]
        # 样本中只有一个特征或者所有样本的特征都一样的话就看哪个label的票数高
        if len(train_feature[0]) == 1 or len(np.unique(train_feature, axis=0)) == 1:
            vote = {}
            for l in train_label:
                if l in vote.keys():
                    vote[l] += 1
                else:
                    vote[l] = 1
            max_count = 0
            vote_label = None
            for k, v in vote.items():
                if v > max_count:
                    max_count = v
                    vote_label = k
            return vote_label
        # 根据信息增益拿到特征的索引
        best_feature = self.getBestFeature(train_feature, train_label)
        tree = {best_feature: {}}
        f = np.array(train_feature)
        # 拿到bestfeature的所有特征值
        f_set = set(f[:, best_feature])
        # 构建对应特征值的子样本集sub_feature, sub_label
        for v in f_set:
            sub_feature = []
            sub_label = []
            for i in range(len(train_feature)):
                if train_feature[i][best_feature] == v:
                    sub_feature.append(train_feature[i])
                    sub_label.append(train_label[i])
            # 递归构建决策树
            tree[best_feature][v] = self.createTree(sub_feature, sub_label)
        return tree
    # 后剪枝
    def post_cut(self, val_feature, val_label):
        # 拿到非叶子节点的数量
        def get_non_leaf_node_count(tree):
            non_leaf_node_path = []
            def dfs(tree, path, all_path):
                for k in tree.keys():
                    if isinstance(tree[k], dict):
                        path.append(k)
                        dfs(tree[k], path, all_path)
                        if len(path) > 0:
                            path.pop()
                    else:
                        all_path.append(path[:])
            dfs(tree, [], non_leaf_node_path)
            unique_non_leaf_node = []
            for path in non_leaf_node_path:
                isFind = False
                for p in unique_non_leaf_node:
                    if path == p:
                        isFind = True
                        break
                if not isFind:
                    unique_non_leaf_node.append(path)
            return len(unique_non_leaf_node)
        # 拿到树中深度最深的从根节点到非叶子节点的路径
        def get_the_most_deep_path(tree):
            non_leaf_node_path = []
            def dfs(tree, path, all_path):
                for k in tree.keys():
                    if isinstance(tree[k], dict):
                        path.append(k)
                        dfs(tree[k], path, all_path)
                        if len(path) > 0:
                            path.pop()
                    else:
                        all_path.append(path[:])
            dfs(tree, [], non_leaf_node_path)
            max_depth = 0
            result = None
            for path in non_leaf_node_path:
                if len(path) > max_depth:
                    max_depth = len(path)
                    result = path
            return result
        # 剪枝
        def set_vote_label(tree, path, label):
            for i in range(len(path)-1):
                tree = tree[path[i]]
            tree[path[len(path)-1]] = vote_label
        acc_before_cut = self.calc_acc_val(self.tree, val_feature, val_label)
        # 遍历所有非叶子节点
        for _ in range(get_non_leaf_node_count(self.tree)):
            path = get_the_most_deep_path(self.tree)
            # 备份树
            tree = deepcopy(self.tree)
            step = deepcopy(tree)
            # 跟着路径走
            for k in path:
                step = step[k]
            # 叶子节点中票数最多的标签
            vote_label = sorted(step.items(), key=lambda item: item[1], reverse=True)[0][0]
            # 在备份的树上剪枝
            set_vote_label(tree, path, vote_label)
            acc_after_cut = self.calc_acc_val(tree, val_feature, val_label)
            # 验证集准确率高于0.9才剪枝
            if acc_after_cut > acc_before_cut:
                set_vote_label(self.tree, path, vote_label)
                acc_before_cut = acc_after_cut
    def fit(self, train_feature, train_label, val_feature, val_label):
        '''
        :param train_feature:训练集数据,类型为ndarray
        :param train_label:训练集标签,类型为ndarray
        :param val_feature:验证集数据,类型为ndarray
        :param val_label:验证集标签,类型为ndarray
        :return: None
        '''
        #************* Begin ************#
        self.tree = self.createTree(train_feature, train_label)
        # 后剪枝
        self.post_cut(val_feature, val_label)
 
 
        #************* End **************#
    def predict(self, feature):
        '''
        :param feature:测试集数据,类型为ndarray
        :return:预测结果,如np.array([0, 1, 2, 2, 1, 0])
        '''
        #************* Begin ************#
 
        result = []
 
        # 单个样本分类
        def classify(tree, feature):
            if not isinstance(tree, dict):
                return tree
            t_index, t_value = list(tree.items())[0]
            f_value = feature[t_index]
            if isinstance(t_value, dict):
                classLabel = classify(tree[t_index][f_value], feature)
                return classLabel
            else:
                return t_value
 
        for f in feature:
            result.append(classify(self.tree, f))
 
        return np.array(result)
        #************* End **************#


# 第7关:鸢尾花识别

## 任务描述
本关任务:使用sklearn完成鸢尾花分类任务。

```python


#********* Begin *********#
 
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
 
train_df = pd.read_csv('./step7/train_data.csv').as_matrix()
train_label = pd.read_csv('./step7/train_label.csv').as_matrix()
test_df = pd.read_csv('./step7/test_data.csv').as_matrix()
 
dt = DecisionTreeClassifier()
dt.fit(train_df, train_label)
result = dt.predict(test_df)
 
result = pd.DataFrame({'target':result})
result.to_csv('./step7/predict.csv', index=False)
#********* End *********#

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/550185.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

聚道云软件连接器助力企业实现滴滴出差报销自动化

一、客户介绍 某机械有限公司是一家在机械设备制造领域拥有深厚底蕴和卓越实力的企业。自公司成立以来,该公司始终秉承创新、务实、高效的发展理念,专注于机械设备的研发、生产和销售。经过多年的发展,公司已成为国内机械行业的佼佼者&#…

在Qt中如何简单设计一个文件和图像浏览器

文本浏览器 设计一个文本浏览器程序,可以打开、显示 txt、html等文件。 1.在Qt Designer中设计一个菜单其中包含打开和退出选项: 2. 在 QMainWindow 构造函数中把 textBrower 设为主窗口的中心部件,这样整个窗口就成了包含 textBrower 的单文…

书生·浦语2.0(InternLM2)大模型实战--Day04 XTuner微调 | 1.8B 多模态Agent

视频地址: https://b23.tv/QUhT6ni课程文档:https://github.com/InternLM/Tutorial/blob/camp2/xtuner/readme.md作业文档:https://github.com/InternLM/Tutorial/blob/camp2/xtuner/homework.md XTuner 微调个人小助手认知 在本节课中讲一步…

SQL刷题---2021年11月每天新用户的次日留存率

解题思路: 1.首先算出每个新用户注册的日期,将其命名为表a select uid,min(date(in_time)) dt from tb_user_log group by uid2.计算出每个用户登录的天数,将其命名为表b select uid,date(in_time) dt from tb_user_log union select uid,date(out_time) dt fro…

linux C -- 消息队列

linux C -- 消息队列 前言一、System V(IPC)消息队列接口调用主要涉及到 msgget、msgsnd、msgrcv 和 msgctl 四个接口: 1、创建消息队列 msgget2、发送消息到队列3、从队列接收信息4、控制消息队列 msgctl5、删除消息队列 二、代码编写1、发送部分的代码2、代码完成…

扭蛋机市场如何?全新淘宝扭蛋机小程序发展前景

近几年,扭蛋机市场发展的非常迅速,市场发展前景也在不断扩大。随着人们的生活水平提高,对娱乐消费也更加青睐,尤其是具有刺激性、惊喜性的消费模式。而扭蛋机具备的优势刚好符合大众对娱乐消费的要求,因此,…

Kafka服务端(含Zookeeper)一键自启软件

1. 前言 本文介绍了一款集成图形化界面配置和一键自启功能的Kafka与Zookeeper服务管理软件。该软件通过直观易用的图形界面,使用户能够轻松完成Kafka和Zookeeper的配置工作,有效避免了手动编辑配置文件可能带来的错误和不便。同时,软件还提供…

TCP网络程序

上一章我们基于UDP实现了几个网络程序,这一章我们开始使用TCP。 先简单复习一下TCP和UDP的特点: TCP特点 传输层协议有连接可靠传输面向字节流 UDP特点 传输层协议无连接不可靠传输面向数据报 可以看到TCP是有链接的,而UDP是无连接的&#…

简单3步,OpenHarmony上跑起ArkUI分布式小游戏

标准系统新增支持了方舟开发框架(ArkUI)、分布式组网和 FA 跨设备迁移能力等新特性,因此我们结合了这三种特性使用 ets 开发了一款如下动图所示传炸弹应用。 打开应用在通过邀请用户进行设备认证后,用户须根据提示完成相应操作&am…

2024-14.python前端+Django

第四篇 web前端 第1章 、Web的基本概念 前端基础总共分为三部分:html、css和js。 1.3、HTTP协议 1.3.1 、http协议简介 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于万维网(WWW:World Wide Web &am…

神经网络压缩图像

简介 典型的压缩管道由四个组件组成: 编码:输入图像 x x x通过编码器函数 ε \varepsilon ε,将其转换为潜在表示 z z z。 量化:截断 z z z以丢弃一些不重要的信息 熵编码:使用某种形式的熵编码(例如&…

淘宝API商品详情数据在数据分析行业中具有不可忽视的重要性

淘宝商品详情数据在数据分析行业中具有不可忽视的重要性。这些数据为商家、市场分析师以及数据科学家提供了丰富的信息,有助于他们更深入地理解市场动态、消费者行为以及商品竞争态势。以下是淘宝商品详情数据在数据分析行业中的重要性体现: 请求示例&a…

OpenStack 入门体验

目录 一、云计算概述 1.1、什么是云计算 1.2、云计算的服务模型 1)IaaS 2)PaaS 3)SaaS 1.3、OpenStack 概述 1)OpenStack 起源 2)什么是 OpenStack 3)OpenStack 优势 二、OpenStack 一…

基于JavaWeb开发的springboot网约车智能接单规划小程序[附源码]

基于JavaWeb开发的springboot网约车智能接单规划小程序[附源码] 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系方式 承接各种…

Java项目如何使用EasyExcel插件对Excel数据进行导入导出

文章目录 一、EasyExcel的示例导入依赖创建实体类数据导入和导出 二、EasyExcel的作用三、EasyExcel的注解 EasyExcel是一个阿里巴巴开源的excel处理框架,它以使用简单、节省内存著称。在解析Excel时,EasyExcel没有将文件数据一次性全部加载到内存中&…

使用 Flask 和 Flask-Login 构建用户认证的 Web 应用程序

在本篇技术博客中,我们将学习如何使用 Flask 框架和 Flask-Login 扩展构建一个具有用户认证功能的简单 Web 应用程序。我们将从创建 Flask 应用实例开始,然后逐步添加用户认证功能。 1. 安装依赖库 首先,确保您已经安装了 Flask、Flask-PyM…

大模型微调的几种常见方法

在文章深入理解大语言模型微调技术中,我们详细了解大语言模型微调的概念和训练过程,本篇给大家介绍大模型微调常见的7种训练方法。 1、Adapter Tuning 2019年谷歌的研究人员首次在论文《Parameter-Efficient Transfer Learning for NLP》提出针对 BERT 的…

2024年Q1季度空调行业线上市场销售数据分析

Q1季度一直以来就是空调行业的淡季(旺季一般出现在5月至7月)。而今年,空调线上市场低迷发展的态势越发明显。 根据鲸参谋数据显示,2024年1月至3月线上电商平台(京东天猫淘宝)空调累计销量约270万件&#x…

开源 Ruo-Yi 项目引入 Mybatis-Plus:3.5.3 报错ClassNotFoundException:

开源 Ruo-Yi 项目引入 Mybatis-Plus:3.5.3 报错ClassNotFoundException: Caused by: java.lang.ClassNotFoundException: com.baomidou.mybatisplus.extension.plugins.MybatisPlusInter1 分析问题 控制台报错说明我们引入的 mybatis-plus 的依赖里找不到com.baom…

Apache Tomcat 简单使用

Apache Tomcat 下载 download Tomcat服务器是一个免费的开放源代码的Web应用服务器,属于轻量级应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试JSP程序的首选。 支持JDK版本 JDK8 要下载tomcat 9.0.x版本 …