1. 什么是数据
数据:是描述客观事物的符号,是计算机中可以操作的对象,是能被计算机识别,并输入给计算机处理的符号集合。数据不仅仅包括整型、实型等数值类型,还包括字符及声音、图像、视频等非数值类型。
比如我们现在常用的搜索引擎,一般会有网页、MP3、图片、视频等分类。MP3就是声音数据,图片当然是图像数据,视频就不用说了,而网页其实指的就是全部数据的搜索,包括最重要的数字和字符等文字数据。
也就是说,我们这里说的数据,其实就是符号,而且这些符号必须具备两个前提:
■ 可以输入到计算机中。
■ 能被计算机程序处理。
对于字符数据类型,就需要进行非数值的处理。而声音、图像、视频等其实是可以通过编码的手段变成字符数据来处理的。
1.1 数据元素
数据元素:是组成数据的、有一定意义的基本单位,在计算机中通常作为整体处理。也被称为记录。比如,在人类中,什么是数据元素呀?当然是人了。畜类呢?哈,牛、马、羊、鸡、猪、狗等动物当然就是禽类的数据元素。
1.2 数据项
数据项:一个数据元素可以由若干个数据项组成。
如人这样的数据元素,可以有眼、耳、鼻、嘴、手、脚这些数据项,也可以有姓名、年龄、性别、出生地址、联系电话等数据项,具体有哪些数据项,要视你做的系统来决定。
数据项是数据不可分割的最小单位。在数据结构这门课程中,我们把数据项定义为最小单位,是有助于我们更好地解决问题。所以,记住了,数据项是数据的最小单位。但真正讨论问题时,数据元素才是数据结构中建立数据模型的着眼点。就像我们讨论一部电影时,是讨论这部电影角色这样的“数据元素”,而不是针对这个角色的姓名或者年龄这样的“数据项”去研究分析。
1.3 数据对象
数据对象:是性质相同的数据元素的集合,是数据的子集。
什么叫性质相同呢,是指数据元素具有相同数量和类型的数据项,比如,还是刚才的例子,人都有姓名、生日、性别等相同的数据项。
既然数据对象是数据的子集,在实际应用中,处理的数据元素通常具有相同性质,在不产生混淆的情况下,我们都将数据对象简称为数据。
好了,有了这些概念的铺垫,我们的主角登场了。
说了数据的定义,那么数据结构中的结构又是什么呢?
2 什么是结构
结构,简单的理解就是关系,比如分子结构,就是说组成分子的原子之间的排列方式。严格点说,结构是指各个组成部分相互搭配和排列的方式。在现实世界中,不同数据元素之间不是独立的,而是存在特定的关系,我们将这些关系称为结构。那数据结构是什么?
数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。
在计算机中,数据元素并不是孤立、杂乱无序的,而是具有内在联系的数据集合。数据元素之间存在的一种或多种特定关系,也就是数据的组织形式。
为编写出一个“好”的程序,必须分析待处理对象的特性及各处理对象之间存在的关系。这也就是研究数据结构的意义所在。
定义中提到了一种或多种特定关系,具体是什么样的关系,这正是我们下面要讨论的问题。
2.1 逻辑结构
逻辑结构:是指数据对象中数据元素之间的相互关系。其实这也是我们今后最需要关注的问题。逻辑结构分为以下四种:
a 集合结构
集合结构:集合结构中的数据元素除了同属于一个集合外,它们之间没有其他关系。各个数据元素是“平等”的,它们的共同属性是“同属于一个集合”。数据结构中的集合关系就类似于数学中的集合(如下图所示)。
b 线性结构
线性结构:线性结构中的数据元素之间是一对一的关系
c 树形结构
树形结构:树形结构中的数据元素之间存在一种一对多的层次关系。
d 图形结构
图形结构:图形结构的数据元素是多对多的关系.
我们在用示意图表示数据的逻辑结构时,要注意两点:
■ 将每一个数据元素看做一个结点,用圆圈表示。
■ 元素之间的逻辑关系用结点之间的连线表示,如果这个关系是有方向的,那么用带箭头的连线表示。
从之前的例子也可以看出,逻辑结构是针对具体问题的,是为了解决某个问题,在对问题理解的基础上,选择一个合适的数据结构表示数据元素之间的逻辑关系。
2.2 物理结构
说完了逻辑结构,我们再来说说数据的物理结构(很多书中也叫做存储结构,你只要在理解上把它们当一回事就可以了)。
物理结构:是指数据的逻辑结构在计算机中的存储形式。
数据是数据元素的集合,那么根据物理结构的定义,实际上就是如何把数据元素存储到计算机的存储器中。存储器主要是针对内存而言的,像硬盘、软盘、光盘等外部存储器的数据组织通常用文件结构来描述。
数据的存储结构应正确反映数据元素之间的逻辑关系,这才是最为关键的,如何存储数据元素之间的逻辑关系,是实现物理结构的重点和难点。
数据元素的存储结构形式有两种:顺序存储和链式存储。
a 顺序存储结构
顺序存储结构:是把数据元素存放在地址连续的存储单元里,其数据间的逻辑关系和物理关系是一致的.
这种存储结构其实很简单,说白了,就是排队占位。大家都按顺序排好,每个人占一小段空间,大家谁也别插谁的队。我们之前学计算机语言时,数组就是这样的顺序存储结构。当你告诉计算机,你要建立一个有9个整型数据的数组时,计算机就在内存中找了片空地,按照一个整型所占位置的大小乘以9,开辟一段连续的空间,于是第一个数组数据就放在第一个位置,第二个数据放在第二个,这样依次摆放。
b 链式存储结构
如果就是这么简单和有规律,一切就好办了。可实际上,总会有人插队,也会有人要上厕所、有人会放弃排队。所以这个队伍当中会添加新成员,也有可能会去掉老元素,整个结构时刻都处于变化中。显然,面对这样时常要变化的结构,顺序存储是不科学的。那怎么办呢?
现在如银行、医院等地方,设置了排队系统,也就是每个人去了,先领一个号,等着叫号,叫到时去办理业务或看病。在等待的时候,你爱在哪在哪,可以坐着、站着或者走动,甚至出去逛一圈,只要及时回来就行。你关注的是前一个号有没有被叫到,叫到了,下一个就轮到了。
链式存储结构:是把数据元素存放在任意的存储单元里,这组存储单元可以是连续的,也可以是不连续的。数据元素的存储关系并不能反映其逻辑关系,因此需要用一个指针存放数据元素的地址,这样通过地址就可以找到相关联数据元素的位置。
显然,链式存储就灵活多了,数据存在哪里不重要,只要有一个指针存放了相应的地址就能找到它了。
逻辑结构是面向问题的,而物理结构就是面向计算机的,其基本的目标就是将数据及其逻辑关系存储到计算机的内存中。
3. 数据类型
数据类型:是指一组性质相同的值的集合及定义在此集合上的一些操作的总称。
数据类型是按照值的不同进行划分的。在高级语言中,每个变量、常量和表达式都有各自的取值范围。类型就用来说明变量或表达式的取值范围和所能进行的操作。
当年那些设计计算机语言的人,为什么会考虑到数据类型呢?
比如,大家都需要住房子,也都希望房子越大越好。但显然,没有钱,考虑房子是没啥意义的。于是商品房就出现了各种各样的房型,有别墅的,有错层的,有单间的;有一百多平米的,也有几十平米的,甚至在北京还出现了胶囊公寓——只有两平米的房间……这样就满足了不同人的需要。
同样,在计算机中,内存也不是无限大的,你要计算一个如1+1=2、3+5=8这样的整型数字的加减乘除运算,显然不需要开辟很大的适合小数甚至字符运算的内存空间。于是计算机的研究者们就考虑,要对数据进行分类,分出来多种数据类型。
在C语言中,按照取值的不同,数据类型可以分为两类:
■ 原子类型:是不可以再分解的基本类型,包括整型、实型、字符型等。
■ 结构类型:由若干个类型组合而成,是可以再分解的。例如,整型数组是由若干整型数据组成的。
比如,在C语言中变量声明int a,b,这就意味着,在给变量a和b赋值时不能超出int的取值范围,变量a和b之间的运算只能是int类型所允许的运算。