论文笔记:Time Travel in LLMs: Tracing Data Contamination in Large Language Models

iclr 2024 spotlight reviewer评分 688

1 intro

  • 论文认为许多下游任务(例如,总结、自然语言推理、文本分类)上观察到的LLMs印象深刻的表现可能因数据污染而被夸大
    • 所谓数据污染,即这些下游任务的测试数据出现在LLMs的预训练数据中
    • 保证无污染并非易事,因为有两个潜在的污染源:直接从官方数据集版本摄取(较易控制),和通过网络上某处找到的重复数据间接获得(几乎无法控制)
  • ——>论文提出了一种成本低廉且稳健的方法,自动检测给定数据集分区的数据污染
    • 论文基于两个现实假设
      • (a)无法直接访问LLMs的预训练数据
      • (b)的计算资源有限
  • 方法首先通过从相应数据集分区的小型随机样本中抽取个别实例来识别潜在污染
    • 使用从个别实例获得的信息,然后评估整个数据集分区是否受污染
  • 为了识别个别实例的污染,论文采用了一种“引导指令”:一个整合了源数据集的独特标识符的提示
    • 这些信息包括数据集名称、它的分区(训练、测试或验证)以及随机选择的参考实例的初始部分,并在相关时补充其标签
    • 指导LLM续写给定的部分实例
  • 使用这些生成的内容,论文提出了两种启发式方法来估计整个数据集分区是否受污染
    • 第一种启发式方法认为,如果在引导指令下生成的部分与参考实例之间的平均重叠得分在统计上显著高于使用不包括数据集和分区名称的“通用指令”测得的得分,则该分区很可能受污染
    • 第二种启发式方法是,如果基于GPT-4的分类器通过少量示例的in-context learning,至少标记一个生成的部分与参考实例精确匹配,或至少两个生成的部分为近精确匹配,则标记该分区为受污染

     2 method

  • 论文基于两个核心假设
    • (1)缺乏直接访问LLMs的预训练数据,
    • (2)计算资源有限
  • 在这些前提下,论文:
    • 首先检查数据集分区中的个别实例,以在实例级别发现污染
    • 其次检测到的受污染实例相关分区可以被标记为泄露给LLM的预训练数据
  • 实例的精确复制作为相应分区污染的标志

2.1 检测实例级污染

2.1.1 测量实例级污染的组件

2.1.2 测量实例级污染

  • 方法1:BLEURT和ROUGE-L
    • ROUGE-L评估词汇相似性
    • BLEURT衡量生成序列与参考实例相比的语义相关性和流畅性
    • 如果在引导指令下完成的平均重叠得分超过通用指令的得分,则检测到实例级污染
  • GPT-4评估:
    • 虽然BLEURT和ROUGE-L都量化了生成实例与参考实例之间的重叠,但它们无法精确指出近乎精确的匹配
    • ——>采用少量示例的ICL提示来指导检测精确/近精确匹配
      • 在提示中使用一些代表性的精确匹配和近乎精确匹配的示例——这些示例来自人类评估,用以评估所有其他生成的完成

2.2 检测分区级污染

  • 为了从实例级污染推广到分区级离散决策(即分区是/不是受污染的),论文利用了两个观察结果:
    • 观点1
      • 如果使用引导指令生成的完成与参考实例的平均重叠得分显著高于使用通用指令生成的完成的得分,则该数据集很可能受到污染
      • 两种指令之间的唯一区别是引导指令包含了数据集和分区的名称作为指导,因此改进只能由污染来解释
    • 观点2
      • 如果使用少量示例ICL提示的GPT-4检测到至少一个精确匹配或至少两个近乎精确匹配,则该数据集很可能受到污染

3 实验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/546802.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java的深入探究JVM之内存结构

前言 Java作为一种平台无关性的语言,其主要依靠于Java虚拟机——JVM,我们写好的代码会被编译成class文件,再由JVM进行加载、解析、执行,而JVM有统一的规范,所以我们不需要像C那样需要程序员自己关注平台,大…

实景三维技术在公共安全领域的应用

随着科技的不断发展,实景三维技术在公共安全领域的应用越来越广泛。实景三维技术是指通过采集现实世界的三维数据,构建出真实的三维场景,进而实现对现实世界的数字化模拟和重建。在公共安全领域,实景三维技术的应用不仅可以提高安…

《云原生安全攻防》-- 云原生攻防矩阵

在本节课程中,我们将开始学习如何从攻击者的角度思考,一起探讨常见的容器和K8s攻击手法,包含以下两个主要内容: 云原生环境的攻击路径: 了解云原生环境的整体攻击流程。 云原生攻防矩阵: 云原生环境攻击路径的全景视图&#xff0…

服务器负载均衡SLB/加密原理

多台服务器提供相同的服务 SLB(server load balancing) 多台服务器对应一个虚拟地址,该地址是防火墙虚拟出来的。 服务器负载均衡功能仅支持IPV4协议 多通道协议仅支持FTP协议

逆向IDA中Dword,数据提取

我们可以看见数据是这样的&#xff0c;第一个是1cc 但是我们shifte就是 这个因为他的数据太大了&#xff0c;导致高位跑后面去了 这个时候&#xff0c;我们右键——convert——dword 这样就可以提取到争取的数据了 比如第一个数据 0x1cc a0xcc b0x1 print(hex((b<<8…

M系Mac关闭SIP

文章目录 M系Mac关闭SIP一&#xff1a;查看SIP状态二&#xff1a;关闭SIP步骤 M系Mac关闭SIP 一&#xff1a;查看SIP状态 1、使用终端 打开终端 输入csrutil status&#xff0c;回车 你会看到以下信息中的一个&#xff0c;指示SIP状态 已打开 System Integrity Protection s…

C#引用外部组件的常用方法

我们在开发程序过程中&#xff0c;时常会使用到第三方组件&#xff0c;比如一些通信、UI组件等。常用的引用方法有下面几种。 01 NuGet引用 NuGet是.NET的一个包管理平台&#xff0c;很多开源组件会通过NuGet进行管理和发布。比如我们常用的S7NetPlus等。 从NuGet中引用组件…

吴恩达llama课程笔记:第四课提示词技术

羊驼Llama是当前最流行的开源大模型&#xff0c;其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。作为一款由Meta AI发布的开放且高效的大型基础语言模型&#xff0c;Llama拥有7B、13B和70B&#xff08;700亿&#xff09;三种版本&#xff0c;满足不同场景和需求。 吴恩…

OpenCV表格图片寻找有效的x、y坐标并删除异常点

需求描述&#xff1a; 对表格图片&#xff0c;识别出表格里的横、纵坐标列表&#xff0c;并剔除异常点 解决方法&#xff1a; 通过opencv的getStructuringElement识别出横、竖线通过bitwise_and取得交点并去除表格线获取x和y的所有可能点&#xff0c;按照相邻点不超过阈值来筛…

6、JVM-JVM调优工具与实战

前置启动程序 事先启动一个web应用程序&#xff0c;用jps查看其进程id&#xff0c;接着用各种jdk自带命令优化应用 Jmap 此命令可以用来查看内存信息&#xff0c;实例个数以及占用内存大小 jmap -histo 14660 #查看历史生成的实例 jmap -histo:live 14660 #查看当前存活的实…

Python程序设计 二维列表(二)

实验九 二维列表 1. 血压统计 血压的正常范围是 60mmHg<舒张压<90mmHg 90mmHg<收缩压<140mmHg 输入小张测量血压的日期&#xff0c;舒张压和收缩压&#xff0c;存放到列表xy中 将小张血压不正常次数百分比计算并显示出来 将小张血压不正常的日期&#xff0c;舒张…

OneFlow深度学习简介

介绍 OneFlow是一个基于深度学习的开源框架,主要面向机器学习工程师和研究人员。它提供了类似于其他深度学习框架(如TensorFlow和PyTorch)的API,同时具有高性能和高效的特点。OneFlow专注于在大规模数据集和分布式环境下的训练和推理,以及在生产环境中的部署和优化。其设计…

基于Java+SpringBoot+vue+node.js的图书购物商城系统详细设计和实现

基于JavaSpringBootvuenode.js的图书购物商城系统详细设计和实现 &#x1f345; 作者主页 央顺技术团队 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; &#x1f345; 查看下方微信号获取联系方式 承接各…

GD32F3系列单片机环境搭建STM32CubeMX版

GD32单片机介绍 使用到开发板 GD32F303C-START 芯片型号&#xff1a;GD32F303CGT6 PinToPin单片机型号&#xff1a;STM32F103 GD32F303CGT6是超低开发预算需求并持续释放Cortex-M4高性能内核的卓越动力&#xff0c;为取代及提升传统的8位和16位产品解决方案&#xff0c;直接进…

ppt里的音乐哪里来的?

心血来潮&#xff0c;想照着大神的模板套一个类似于快闪的ppt。 ppt里是有一段音乐的&#xff0c;那段音乐就是从幻灯片第二页开始响起的。 但是我就找不到音乐在哪。 甚至我把ppt里的所有素材都删除了&#xff0c;再看动画窗格&#xff0c;仍然是空无一物&#xff0c;显然&…

解析OceanBase v4.2 Oracle 语法兼容之 LOCK TABLE

背景 在OceanBase V4.1及之前的版本中&#xff0c;尽管已经为Oracle租户兼容了LOCK TABLE相关的语法&#xff0c;包括单表锁定操作&#xff0c;和WAIT N&#xff0c; NOWAIT 关键字。但使用时还存在一些限制。例如&#xff1a;LOCK TABLE只能针对单表进行锁定&#xff0c;并不…

OpenCV-AMF算法(自适应中值滤波Adaptive Median Filtering)

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 实现原理 AMF&#xff08;Adaptive Median Filter&#xff0c;自适应中值滤波&#xff09;是一种用于图像处理和信号处理的滤波算…

腾讯云轻量应用服务器端口开启教程

腾讯云轻量应用服务器端口怎么打开&#xff1f;在轻量应用服务器控制台的防火墙中开启端口&#xff0c;本文腾讯云百科txybk.com以80端口为例&#xff0c;来详细说下轻量应用服务器端口打开教程&#xff0c;另外可以在腾讯云百科 txy.wiki 查看当前轻量服务器最新的优惠券和配置…

Angular学习第四天--问题记录及父子组件问题

问题一、 拉取完项目&#xff0c;使用npm install命令的时候遇到的。 解决办法&#xff1a; 在查找网上五花八门的解决方案之后&#xff0c;发现都不能解决。 我的解决办法是&#xff1a; 1. 把package-lock.json给删掉&#xff1b; 2. 把package.json中公司自己库的包给删除掉…

112 arcpy 发布 mxd地图文件 到 arcgis服务器 为 地图服务

前言 此文档主要是记录一下 最近的一次机遇 arcpy 来发布 地图文件到 arcgis服务器 上面 arcpy 主要是来自于 ArcGIS_Desktop_105_154030.zip 安装之后会在 python 的安装目录 安装另外的一份带 arcgis 的 python 环境, 然后 本文相关类库 也是基于 这个 arcpy 的 python 环境…