数据结构(算法)

总结,建议看EXCEL的《算法》页签,不然感觉有点乱

   备注原理/步骤时间复杂度空间复杂度
串的应用模式匹配简单/暴力O(mn)
 KMP  O(m+n) 
树的应用哈夫曼树
1、带权路径长度WPL
2、外部排序-最佳归并树
1、哈夫曼树的度,只有0和m(m叉树)(王道P176
2、哈夫曼编码,是从根结点到叶子结点的路径上的01组合(
王道P180.T4
3、同一组编码/权值,构造出来的哈夫曼树可以不同【自己举个例子就知道了】(
王道P180.T6A
4、路径长度指:Σ(叶子结点的值 x 到根的长度数),之和【领悟:哈夫曼树的构造,除了第一次用m个数据(如0、2、3),其他每次只用m-1个数据(因为有1个数据是来自下一层的和)】

王道.P359.T07
  并查集
1、Kruskal,克鲁斯卡尔(王道.P182.T10)
2、无向图的连通性判断
    
 图的存储邻接矩阵O( |V|2 )
 邻接表删除,某个顶点相关的所有边
有向图:O( |V| + |E| )
无向图:O( |V| + 2|E| )
有向图:O( |V| + |E| )
 十字链表(有向图)顶点表:[data,edge1,edge2]
边表:[弧尾点,弧头点,弧头指针,弧尾指针,info]
O( |V| + |E| )
  邻接多重表(无向图)顶点表:[data,edge]
边表:[点1,点2,指针1,指针2,info]
  O( |V| + |E| )
 图的遍历BFS,广度优先1、队列
2、相当于树的层次遍历
像波纹一样推开遍历邻接矩阵:O( |V|2 )
邻接表:O( |V| + |E| )
O( |V| )
  DFS,深度优先1、栈
2、相当于树的先序遍历
3、可用于判断有向图是否有回路
4、逆拓扑排序(王道P210.T11
1、一条路走到黑
2、再退一步,再走到黑
图的应用I 最小生成树
1、权值的和为最小
2、
没有权值相同的边,生成树的树形唯一
3、最小生成树的代价一定是唯一的(王道P228.T18
Prim,普利姆
只与有关
贪心算法
1、n个结点,时间复杂度,与边无关(因为是选n-1边,没选到的边,再多也无用),适合稠密图
2、n个结点,1个最小的,其余n-1个相等的值,从不同的顶点开始Prim算法,则会得到n-1种不同的最小生成树
(王道.P228.T18.III)
1、一个顶点选连接的最小的边(最小边:将已经连接的点,作为整体,看与未连接的边的权重/值,最小的一个),选完:若构成环,则去掉刚选的边,退到上一个顶点
2、结束:所有顶点都连接时
O( |V|2 )
 普克(扑克)Kruskal,克鲁斯卡尔
只与有关
贪心算法
适合边稀疏1、所有边从小到大排序,依次选择:若构成环,去掉继续选下一个
2、结束:所有顶点都连接时
 O( nlog2n ),n是边
 II 最短路径
简单路径
BFS,广度优先1、无权单源(点到点)
2、只能无向图(权值为1或相同)
/邻接矩阵:O( |V|2 )
邻接表:O( |V| + |E| )
 广迪弗(甘道夫)Dijkstra,迪杰斯特拉
贪心算法
1、带权单源(点到点)
2、负权值、负回路不适用
1、主要3个元素:标记、距离、前驱
2、选一个点先初始化
3、①选中距离最小未标记的点,标记置为True;②更新由点到其他未标记的距离、前驱
4、结束:所有结点标记都为True
O( |V|2 )
  Floyd,弗洛伊德1、带权所有顶点
2、负回路不适用
1、A[i][j] > A[i][*] + A[*][j],选择一个"点*"作为转中点,到其他点的距离更新
2、每次选择都需要更新邻接矩阵
O( |V|3 )O( |V|2 )
 III 有向无环图描述表达式
DAG,Directed Acyclic Graph
 最底层的元素都只有一个1、先按顺序写出所有的字母,作为最底层的元素
2、依次往上连接符号,表示一个小的运算
 IV 拓扑排序
AOV,Activity On Vertex Network
1、有拓扑序列就不存在回路
∵要选入度为0,回路是环,不存在入度为0的结点
2、每个顶点出现仅有一次
3、可能排序不唯一
4、A排在B前面,则不存在 B —>A 的路径
依次选择入度为0的点
       逆拓扑排序·DFS,深度优先,出栈时读出DFS,可得逆拓扑顶点有序序列依次选择出度为0的点
 V 关键路径
AOE,Activity On Edge Network
 1、缩短所有关键路径上共有的任意一个关键活动的时间,才可以缩短关键路径长度
2、
e(i):事件最早发生时间
l(i):事件最迟发生时间
ae(i):活动最早发生时间
al(i):活动最迟发生时间
d=ae(i)-al(i),为0就是关键活动
从起点到结束点,长度最大的路径  平均查找长度 ASL
类似EX数学期望
查找线性结构顺序查找1、数组、链表均可
2、每个元素查找成功的比较次数只与位置有关,与是否有序无关,王道.P253.T2
O(n)一般:ASL成功 = ΣPi(n-i+1)
等概率:
ASL
成功 = (n+1)/2
ASL
不成功 = n+1
王道.P250推导
 折半查找
二分查找
1、必须有序,且只能用顺序存储(数组)
2、平衡二叉树
3、(low+high)/2 结果:向上取整或向下取整,但一棵树只能二选一王道.P254.T12/T21
查找:O(log2n)
插入删除:O(n)
等概率:ASL成功 ≈log2(n+1)-1
王道P252例子
P254T13/T18
 分块查找1、块内随意,块间有序;折半查找索引表,顺序查找块内表
2、索引表:一个块的最大的关键字,和第一个元素的位置
3、最理想的块长:√n,且平均查找长度为 (√n) +1
1、先查索引表(顺序查找/(数组时)二分查找)
2、块内顺序查找
  (b+1)/2 + (s+1)/2
分为 b 块,每块有 s 个记录,王道.P254.T16
 树形结构二叉排序树BST
 - 二叉查找树
 - 左 < 根 < 右
0、空树也是二叉排序树
1、可以形成单支树,查找长度为 n,时间复杂度是O(nlogn)
2、中序遍历,会得到一个递增的序列
3、
叶结点,删除后插入,与原树一定相同
非叶结点,删除后插入,与原树一定不同
王道.P276.T21
左子树结点的值 < 根结点的值 < 右子树结点的值查找:O(log2n)/O(n)
插入删除:O(log
2n)
平衡二叉树AVL
-
发明者G. M. Adelson-Velsky和E. M. Landis
 - 是特殊的二叉排序树
0、
 - 空树也是平衡二叉树
 - 平衡因子:左子树高度-右子树高度
 - LL、RR、LR、RL 4种破坏平衡的方式
1、左右子树高度差不超过1
2、不一定是完全二叉树
3、
n0=0,n1=1,n2=2
n
h = nh-1 + nh-2 +1
构造
最大高度 h 的平衡二叉树,所需的最少的结点数nh王道.P275.T10/T11),此时非叶结点的平衡因子为1(王道.P276.T20
4、平衡二叉树,叶结点/非叶子结点,删除后插入,与原树可能相同也可能不同(
王道.P276.T25
 O(log2n) O(log2n)
 B树,多路平衡查找树

1、B树只支持随机查找,B+树支持顺序查找、随机查找(∵B+树的叶子结点包含全部关键字信息,∴支持顺序)
2、
1、每个结点: [(m/2)向上取整]-1 ≤ 关键字 ≤ m-1(王道.P290.T01
2、平衡因子=0,绝对平衡,所有叶子结点都在同一层
3、高度 h ,m 阶B树:(
王道.P291.T06
①结点数最少:2
h - 1(满二叉树)
②结点数最多:m
h - 1(满m叉树)
4、外部结点不算层数
5、m阶,n个点,最大高度、最小高度 P287(
王道.P291.T08/T09
 B+树1、用于各种索引:文件索引、数据库索引    
散列表(哈希表)
散列函数(哈希函数)

1、适合关键字集合与地址集合之间存在对应关系
2、平均查找长度ALS
 - 与表长、元素都
无关
 - 与散列函数、处理冲突的方法、装填因子有关
3、装填因子α = 已有记录数/表长度
α越大
 - 表示哈希表的装满的程度
 - 越容易发生冲突(
王道.P302.T06
∴想要提高查找效率,需要
减小装填因子
4、探测:插入前检测次数(
王道.P302.T07
处理冲突的方法1
开放地址法
Hi = [ H(key) + di ] % m
删除时只能是假删除,否则影响查找
I 线性探测法1、映射后,一直探测到下一个可以存放的地址
2、会出现元素堆积/聚集(同义词与非同义词发生冲突都可以造成堆积),大大降低查询效率
3、细节:空的也会消耗1次对比的机会(
王道.P303.T17/T18
di = 0 1 2 3 … m-1理想情况:O(1)
 II 平方探测法1、m 是一个 4k+3 的质数
2、有效避免堆积
di = 02 12 -12 22 -22 … k2 -k2
 III 伪随机序列法di = 一个随机数列,可以自己定义
 IV 双散列法,再散列法,再哈希法k=Hash1(key)
d=Hash2(key)
探测顺序:(k+d)%n、(k+2d)%n、(k+3d)%n…
处理冲突的方法2
拉链法
链接法,链接地址法1、不会发生堆积数组下标作为指针的起始,用链表存数据  稳定性
排序插入排序直接插入1、不考虑哨兵的比较
 - 最坏的情况需要 n(n-1)/2 次比较
 - 最好的情况只要 n-1 次比较,有序,第一个元素视为已经排好序的,后面每个元素都只要比较1次,所以只要n-1次比较
1、第1个元素视为有序,无序消耗比较次数
2、第i个元素前面都是有序的
3、从后往前,找插入位置,然后进行插入
最好,初始化序列原本有序:O(n)
平均:O(n2/4),所以是O(n2),和最坏一样
最坏,初始化序列刚好逆序:O(n
2)
O(1),每次只要常数个辅助单元Y,先比较,再移动


 - 不稳定4个:希尔选择快速堆,选的太快不稳定
 - 不能原地工作的3个内部排序:基数O(max(r))、快速O(log2n)、归并O(n)【鸡块饼,占空间】
 - 原地工作:空间复杂度O(1)

https://www.cnblogs.com/Xieyang-blog/p/8340578.html+B34
1、时间复杂度(比较+移动)与序列初始状态无关:
 - 选择排序
 - 堆排序
 - 归并排序
 - 基数排序
(口诀:一堆乌龟选基友,和初始状态无关)
2、排序趟数和原始状态有关:2个交换排序都有关(冒泡 + 快速)
3、利用顺序存储的随机访问特性(采用链式会降低速度):
 - 希尔排序
 - 堆排序
 折半插入
二分插入
数组因为是在有序表中查找插入位置,所以查找可以先采用二分查找,再移动元素O(n2)O(1)Y
 希尔排序
缩小增量排序
数组,不适用于链表1、%d 的为一组(d=间隔+1,王道.P316.T08),然后使用直接插入排序同组元素
2、d减小,再进行排序
最好/平均O(n1.3)
最坏:O(n2)
O(1)N,相同元素在不同组时,可能发生位置变化
交换排序
两两比较,次序相反的就交换,直到所有数据没有反序为止
冒泡排序
起泡排序
 - 最坏的情况,刚好逆序,比较和交换次数相同,都需要 n(n-1)/2 次
 - 适用于:数组、链表
 - 在一趟排序过程中,没有发生交换,则算法可以提前结束
1、每次都是从头到尾,两两比较,满足条件的两两交换
2、细节:每次冒泡就确定了本趟“最后元素”的位置,剩余趟数就不用消耗比较次数
王道.P323.T08
最好,有序:O(n)
最坏/平均,逆序:O(n2)
O(1)Y
 快速排序
递归排序
1、待排序列最适合采用:顺序存储(40811T10
2、"有序快排最慢"原则,有序每次划分是 0 和 n-1 个元素
每次将表分为长度相近的两个子表时最快(
王道.P323.T9
3、
递归次数/趟数:
 - 对尚未确定最终位置的所有元素进行一遍处理。如:第二趟需要都处理左右两个子块才算一趟(
王道.P324.T17
 - 与初始数据的排列次序
有关("有序最慢"原则)
 - 与划分后的分区处理前后顺序无关(408.10T10)
4、每一趟排序后,基准值元素,会放在最终的位置
选一个基准值,用两个前后两个指针 i、j:
1、比基准值大,将元素放在j,然后j=j-1
2、比基准值小,将元素放在i,然后i=i+1
3、与基准值相等,不处理

i==j时,左右继续重复上述操作,递归
最好/平均O(nlog2n),最平衡的划分,每次划分,左右元素个数差不多都是n/2
最坏:O(n2),有序元素
递归工作栈,需要空间
最小:O(log2n)
最大:O(n)
N,同右侧的相同元素,都小于基准值,都要移去左边,那么这2个相同的元素相对位置会改变
选择排序
在所有记录中,每次选择最小的,放在最后/前面
选择排序1、数组、链表均可
2、比较次数与初始状态无关,n个元素都需要 n-1 趟
1、每次都要遍历排好序之后的待排序列
2、选择最小的数,与无序的第一个数交换
比较次数:O(n2),2层for循环
移动次数:O(n)
O(1)

图形用户界面, 应用程序  描述已自动生成

手机屏幕的截图  描述已自动生成

手机屏幕的截图  描述已自动生成

N
 堆排序1、在1亿个数里面找出100个最小值,用大根堆(根 ≥ 左、右)
2、堆是用来排序的,其查找效率不高
3、堆,必须是一个完全二叉树
1、破坏堆(取出根值,并用完全二叉树的最后一个元素填充根值)
2、
恢复堆
插入/删除:O(log2n)
构建堆:O(n)
排序:O(nlog
2n)
O(1)N
 胜者树
 - 竞赛树排序
 - 其实就是败者树
  O(nlog2n)  
归并排序归并排序1、N个元素,k路归并,趟数m:km = N
2、m = [log
kN]向上取整,趟数
2路归并:
2个元素/2个块/2个小组,进行1对1比大小,合并成一组,组成新的有序数列
2路归并:
O(nlog
2n),每一趟是O(n),一共 log2n 趟
O(n),合并需要n个辅助单元Y
基数排序
分配(收集)排序
基数排序适用于
1、n比较大
2、r比较小
3、方便拆,且d比较小

不适用:float、double的实数
将n个元素每一个可以拆成d个关键字,每一个关键字有自己的r基数范围O( d·(n+r) )O(max(r))Y
外部排序归并排序1、外部排序时间 = 读写外存的时间 + 内部排序所需时间 + 内部归并所需时间
2、优化思路:减少读写外存的趟数:多路归并,可以减少趟数
2路归并需要在内存分配2个输入缓冲区
4路归并需要在内存分配4个输入缓冲区
r个初始归并段,做K路归并
3、内存中任意一个输入缓冲区空了,需要立即从磁盘中加载一个块继续在内存中排序
1、生成初始的归并段(让内部有序,每一块都需要读、写一次
2、归并2的次方个“归并段”
优化1:
败者树(选择排序)
优化2:
置换-选择排序 + 最佳归并树(哈夫曼树)
1、置换-选择排序:生成不确定但更长的初始归并段
实际是一个一个先放在CPU输出缓冲区,当缓冲区满了才放回磁盘

2、最佳归并树/哈夫曼树
 - 初始归并段的长度 = 每段中的整块数
 - m路归并,初始段有x个,则需: (x-1)%(m-1) = u ≠ 0时,需要 m-1-u 个0的虚段
 - 读写次数 = 2 · WPL

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/546519.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

七月审稿之提升模型效果的三大要素:prompt、数据质量、训练策略(含Reviewer2和PeerRead)​

前言 我带队的整个大模型项目团队超过40人了&#xff0c;分六个项目组&#xff0c;每个项目组都是全职带兼职&#xff0c;且都会每周确定任务/目标/计划&#xff0c;然后各项目组各自做任务拆解&#xff0c;有时同组内任务多时 则2-4人一组 方便并行和讨论&#xff0c;每周文档…

Normalizing Flows

需要学的是神经网络 f f f, 用于完成从source distribution (Pz)&#xff08;latent space&#xff0c;一般为高斯分布&#xff09;到 target distribution (Px) 的映射。 Normalizing Flows 是一种强大的生成模型&#xff0c;它通过学习一个可逆且易于计算的转换来将复杂的概…

(弟弟14)递归•按顺序打印一个整数的每一位

这里是目录哦 题目代码运行截图递归思路递归停止条件如何实现“按顺序”悟了✨加油&#x1f389; 题目 按顺序打印一个整数的每一位。 代码 #include<stdio.h> void Print(int n) {if (n > 9)//递归停止条件{Print(n / 10);//不断趋近递归停止条件}printf("%d…

代码随想录算法训练营Day56|LC583 两个字符串的删除操作LC72 编辑距离

一句话总结&#xff1a;看起来复杂&#xff0c;动规分析以后就比较简单。 原题链接&#xff1a;583 两个字符串的删除操作 本质就是求两个字符串的最短子序列的长度。已经做过&#xff0c;不再详解。 class Solution {public int minDistance(String word1, String word2) {/…

一文读懂自动化运维工具ansible及其使用

1. ansible简介 ansible是干什么的 ansible是目前最受运维欢迎的自动化运维工具&#xff0c;基于Python开发&#xff0c;集合了众多运维工具&#xff08;SaltStack puppet、chef、func、fabric&#xff09;的优点&#xff0c;实现了批量系统配置、批量程序部署、批量运行命令…

麒麟服务器操作系统安装HTTP服务

往期好文&#xff1a;麒麟服务器操作系统安装TFTP服务 Hello&#xff0c;大家好啊&#xff01;今天我们将探讨如何在麒麟服务器操作系统上安装和配置HTTP服务&#xff0c;这是任何网络服务或应用的基础。无论你是想建立一个简单的网站&#xff0c;还是需要一个全功能的Web服务器…

wangzherongyao 2024.04.15

第一局&#xff1a;百里陪那只重置技能CD的辅助&#xff0c;对面有兰陵王&#xff0c;妲己&#xff0c;然后我补位廉颇被自己人和对面一阵嘲讽&#xff0c;真的不想说啥&#xff0c;对面盾山和妲己估计都没明白&#xff0c;我一只就能破他们队伍&#xff0c;所以看到没先出魔抗…

在Windows上配置VS Code GO语言开发环境

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

代码随想录阅读笔记-回溯【全排列】

题目 给定一个 没有重复 数字的序列&#xff0c;返回其所有可能的全排列。 示例 输入: [1,2,3]输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ] 思路 以[1,2,3]为例&#xff0c;抽象成树形结构如下&#xff1a; 回溯三部曲 1、递归函数参数 首先排列是有…

C++内存分布

C代码编译过程 预处理 宏定义展开、头文件展开、条件编译&#xff0c;这里并不会检查语法编译检查语法&#xff0c;将预处理后文件编译生成汇编文件汇编将汇编文件生成目标文件(二进制文件)链接将目标文件链接为可执行程序 进程的内存分布 程序运行起来(没有结束前)就是一个…

Java实现单点登录(SSO)详解:从理论到实践

✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; ✨✨ 帅哥美女们&#xff0c;我们共同加油&#xff01;一起进步&am…

亚信安慧AntDB:为安全加码

亚信安慧AntDB分布式数据库凭借平滑扩展、高可用性和低成本三大核心优势&#xff0c;在业界获得了极高的评价和认可。这些优点不仅为AntDB提供了巨大的市场发展潜力&#xff0c;也使其成为众多企业在数据管理上的首选解决方案。 AntDB的平滑扩展特性极大地提升了企业的灵活性和…

内网渗透-内网环境下的横向移动总结

内网环境下的横向移动总结 文章目录 内网环境下的横向移动总结前言横向移动威胁 威胁密码安全 威胁主机安全 威胁信息安全横向移动威胁的特点 利用psexec 利用psexec.exe工具msf中的psexec 利用windows服务 sc命令 1.与靶机建立ipc连接2.拷贝exe到主机系统上3.在靶机上创建一个…

EasyRecovery数据恢复软件2024百度云网盘下载链接

EasyRecovery数据恢复软件是一款功能强大的数据恢复工具&#xff0c;它能够帮助用户从各种存储设备中恢复丢失或误删除的文件数据。无论是由于意外删除、格式化、病毒攻击还是其他原因导致的数据丢失&#xff0c;EasyRecovery都能提供有效的解决方案。 该软件支持多种存储介质…

JavaScript排序大揭秘:手绘图解6大常见排序算法,一网打尽

前言 &#x1f4eb; 大家好&#xff0c;我是南木元元&#xff0c;热爱技术和分享&#xff0c;欢迎大家交流&#xff0c;一起学习进步&#xff01; &#x1f345; 个人主页&#xff1a;南木元元 本文用图解总结梳理了6种常见的排序算法 &#xff0c;如下&#x1f447;&#xff1…

地理空间分析中的深度学习应用

深度学习与地理信息系统 (GIS) 的结合彻底改变了地理空间分析和遥感的格局。这种结合将遥感和地理空间分析领域带到了全球研究人员和科学家的前沿。 深度学习是机器学习的一个复杂子集&#xff08;更多关于机器学习的内容&#xff0c;请参阅我的其他文章&#xff09;&#xff0…

Qt5 编译oracle数据库驱动

库文件 1、Qt源码目录&#xff1a;D:\Qt5\5.15.2\Src\qtbase\src\plugins\sqldrivers\oci 2、oracle客户端SDK: https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html 下载各版本中的如下压缩包&#xff0c;一定要版本相同的 将两个压缩包…

如何通过WordPress发送电子邮件

本周有一个客户&#xff0c;购买Hostease的HK Basic Linux虚拟主机&#xff0c;询问我们的在线客服&#xff0c;WordPress发送电子邮件不成功。我们为用户提供教程&#xff0c;用户很快完成了设置。在此&#xff0c;我们分享这个操作教程&#xff0c;希望可以对您有帮助。 Host…

github上的软件许可证是什么?如何合并本地的分支德语难学还是俄语更加难学?站在一个中国人的立场上,德语难学还是俄语更加难学?俄语跟德语有什么样的显著差别?

目录 github上的软件许可证是什么&#xff1f; 如何合并本地的分支 德语难学还是俄语更加难学&#xff1f; 站在一个中国人的立场上&#xff0c;德语难学还是俄语更加难学&#xff1f; 俄语跟德语有什么样的显著差别&#xff1f; github上的软件许可证是什么&#xff1f; …

深入剖析Tomcat(二) 实现一个简单的Servlet容器

现在开始《深入剖析Tomcat》第二章的内容&#xff0c;第一章中&#xff0c;我们编码实现了一个能正常接收HTTP请求并返回静态资源的Web容器&#xff0c;这一章开始引入Servlet的概念&#xff0c;使我们的服务能根据请求动态返回内容。 Servlet是什么&#xff1f; 这是首先要弄…