KDD 2023 | 时空数据(Spatial-Temporal)论文总结

2023 KDD论文接收情况:Research track(研究赛道)接收率:22.1%(313/1416),ADS Track(应用数据科学赛道)接收率:25.4%(184/725)

(蹭一下KDD 2024第一轮Rebuttal的热度,祝大家都Rebuttal顺利)

本文总结了在两个赛道时空数据学习的相关论文(如有疏漏,欢迎大家补充),ADS Track在次条

Research track中有3个session中与时空数据(城市计算)紧密相关,还有一些其余session中有一些做的时空数据任务。

Research Track Topic:时空预测,信控优化,轨迹表示学习,多模态,神经过程,迁移学习等
ADS track中有2个session中与时空数据(城市计算)紧密相关,还有一些其余session中有一些做的时空数据任务。
ADS Track Topic:交通模拟,多模态数据,ETA,物流外卖配送,强化学习,交通预测,生成模型等。

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

目录

Spatiotemporal Data

  1. Maintaining the Status Quo: Capturing Invariant Relations for OOD Spatiotemporal Learning

  2. Generalizable Low-Resource Activity Recognition with Diverse and Discriminative Representation Learning

  3. Localised Adaptive Spatial-Temporal Graph Neural Network

  4. Spatio-Temporal Diffusion Point Processes

  5. ST-iFGSM: Enhancing Robustness of Human Mobility Signature Identification Model via Spatial-Temporal Iterative FGSM

  6. On Hierarchical Disentanglement of Interactive Behaviors for Multimodal Spatiotemporal Data with Incompleteness


Urban Data Ⅰ

  1. Robust Spatiotemporal Traffic Forecasting with Reinforced Dynamic Adversarial Training
  2. Pattern Expansion and Consolidation on Evolving Graphs for Continual Traffic Prediction
  3. TransformerLight: A Novel Sequence Modeling Based Traffic Signaling Mechanism via Gated Transformer
  4. Optimizing Traffic Control with Model-Based Learning: A Pessimistic Approach to Data-Efficient Policy Inference
  5. Mitigating Action Hysteresis in Traffic Signal Control with Traffic Predictive Reinforcement Learning
  6. Spatial Heterophily Aware Graph Neural Networks

Urban Data Ⅱ

  1. LightPath: Lightweight and Scalable Path Representation Learning
  2. Urban Region Representation Learning with OpenStreetMap Building Footprints
  3. Multi-Temporal Relationship Inference in Urban Areas
  4. A Study of Situational Reasoning for Traffic Understanding
  5. Frigate: Frugal Spatio-temporal Forecasting on Road Networks

其他

  1. Graph Neural Processes for Spatio-Temporal Extrapolation
  2. Deep Bayesian Active Learning for Accelerating Stochastic Simulation
  3. Generative Causal Interpretation Model for Spatio-Temporal Representation Learning
  4. MM-DAG: Multi-task DAG Learning for Multi-Modal Data with Application for Traffic Congestion Analysis
  5. Transferable Graph Structure Learning for Graph-Based Traffic Forecasting Across Cities

Research Track

Spatiotemporal Data

1. Maintaining the Status Quo: Capturing Invariant Relations for OOD Spatiotemporal Learning

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599421

代码:https://github.com/zzyy0929/KDD23-CauSTG

作者:Zhengyang Zhou (University of Science and Technology of China), Qihe Huang (University of Science and Technology of China), Kuo Yang (University of Science and Technology of China), Kun Wang (University of Science and Technology of China), Xu Wang (University of Science and Technology of China), Yudong Zhang (University of Science and Technology of China), Yuxuan Liang (University of Science and Technology of China), Yang Wang (University of Science and Technology of China)

关键词:分布外泛化,时空OOD,因果学习,不变学习,动态图

CauSTG

2. Generalizable Low-Resource Activity Recognition with Diverse and Discriminative Representation Learning

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599360

代码:https://github.com/microsoft/robustlearn

作者:Xin Qin (Beijing Key Lab. of Mobile Com., CAS), Jindong Wang (Microsoft Research Asia), Shuo Ma (Beijing Key Lab. of Mobile Com., CAS), Wang Lu (Beijing Key Lab. of Mobile Com., CAS), Yongchun Zhu (Beijing Key Lab. of Mobile Com., CAS), Xin Xie (Microsoft Research Asia), Yiqiang Chen (Beijing Key Lab. of Mobile Com., CAS)

关键词:普适计算,迁移学习

DDLearn

3. Localised Adaptive Spatial-Temporal Graph Neural Network

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599418

作者:Wenying Duan (Nanchang University), Xiaoxi He (University of Macau), Zimu Zhou (City University of Hong Kong), Lothar Thiele (ETH Zurich), Hong Rao (Nanchang University)

关键词:时空预测,时空图神经网络,稀疏图

ASTGNNs

4. Spatio-Temporal Diffusion Point Processes

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599511

代码:https://github.com/tsinghua-fib-lab/Spatio-temporal-Diffusion-Point-Processes

作者:Yuan Yuan (Department of Electronic Engineering, Tsinghua University), Jingtao Ding (Department of Electronic Engineering, Tsinghua University), Chenyang Shao (Department of Electronic Engineering, Tsinghua University), Depeng Jin (Department of Electronic Engineering, Tsinghua University), Yong Li (Department of Electronic Engineering, Tsinghua University)

关键词:扩散模型,点过程

DSTPP

5. ST-iFGSM: Enhancing Robustness of Human Mobility Signature Identification Model via Spatial-Temporal Iterative FGSM

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599513

代码:https://github.com/mhu3/ST-Siamese-Attack

作者:Mingzhi Hu (Worcester Polytechnic Institute), Xin Zhang (Worcester Polytechnic Institute), Yanhua Li (Worcester Polytechnic Institute), Xun Zhou (University of Iowa), Jun Luo (Lenovo Group Limited)

关键词:稳健性,对抗攻击,驾驶员检测,异常检测

Spatial-temporal HuMID

6. On Hierarchical Disentanglement of Interactive Behaviors for Multimodal Spatiotemporal Data with Incompleteness

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599448

作者:Jiayi Chen (University of Virginia), Aidong Zhang (University of Virginia)

关键词:多模态时空数据,无监督学习,知识表示和推理,时空解耦,缺失数据,自编码器

Urban Data I

7. Robust Spatiotemporal Traffic Forecasting with Reinforced Dynamic Adversarial Training

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599492

代码:https://github.com/usail-hkust/RDAT

作者:Fan Liu (The Hong Kong University of Science and Technology (Guangzhou)), Weijia Zhang (The Hong Kong University of Science and Technology (Guangzhou)), Hao Liu (The Hong Kong University of Science and Technology (Guangzhou); The Hong Kong University of Science and Technology)

关键词:交通预测、对抗网络,稳健性

RDAT

8. Pattern Expansion and Consolidation on Evolving Graphs for Continual Traffic Prediction

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599463

作者:Binwu Wang (University of Science and Technology of China), Yudong Zhang (University of Science and Technology of China), Xu Wang (University of Science and Technology of China), Pengkun Wang (Suzhou Institute for Advanced Research, University of Science and Technology of China), Zhengyang Zhou (Suzhou Institute for Advanced Research, University of Science and Technology of China), LEI BAI (Shanghai AI Laboratory), Yang Wang (University of Science and Technology of China)

关键词:交通预测、持续学习

PECPM

9. TransformerLight: A Novel Sequence Modeling Based Traffic Signaling Mechanism via Gated Transformer

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599530

代码:https://github.com/Smart-Trafficlab/TransformerLight

作者:Qiang Wu (University of Electronic Science and Technology of China), Mingyuan Li (Beijing University of Posts and Telecommunications), Jun Shen (University of Wollongong), Linyuan Lü(University of Science and Technology of China), Bo Du (University of Wollongong), Ke Zhang (Beijing University of Posts and Telecommunications)

关键词:信控优化

解读:https://mp.weixin.qq.com/s/3CSCGMOm8xhMOpny0EeNQQ

TransformerLight

10. Optimizing Traffic Control with Model-Based Learning: A Pessimistic Approach to Data-Efficient Policy Inference

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599459

代码:https://github.com/siddarth-c/KDD23-ADAC

作者:Mayuresh Kunjir (Amazon Web Services), Sanjay Chawla (Qatar Computing Research Institute, Hamad Bin Khalifa University), Siddarth Chandrasekar (Indian Institute of Technology Madras), Devika Jay (Indian Institute of Technology Madras), Balaraman Ravindran (Indian Institute of Technology Madras)

关键词:信控优化,离线强化学习

11. Mitigating Action Hysteresis in Traffic Signal Control with Traffic Predictive Reinforcement Learning

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599528

作者:Xiao Han (City University of Hong Kong), Xiangyu Zhao (City University of Hong Kong), Liang Zhang (Shenzhen Research Institute of Big Data), Wanyu Wang (City University of Hong Kong)

关键词:信控优化,交通状态预测

解读:https://mp.weixin.qq.com/s/F4DDGaabm6Yfs3j5_CSCCg

PRLight

12. Spatial Heterophily Aware Graph Neural Networks

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599510

代码:https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/SHGNN

作者:Congxi Xiao (University of Science and Technology of China; Baidu Research), Jingbo Zhou (Baidu Research), Jizhou Huang (Baidu Inc.), Tong Xu (University of Science and Technology of China; State Key Laboratory of Cognitive Intelligence), Hui Xiong (The Hong Kong University of Science and Technology (Guangzhou); The Hong Kong University of Science and Technology)

关键词:空间异质性、时空预测

SHGNN

Urban Data II

13. LightPath: Lightweight and Scalable Path Representation Learning

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599415

作者:Sean Bin Yang (Aalborg University), Jilin Hu (East China Normal University), Chenjuan Guo (East China Normal University), Bin Yang (East China Normal University), Christian Jensen (Aalborg University)

关键词:轨迹表示学习,自监督学习,轻量化

LightPath

14. Urban Region Representation Learning with OpenStreetMap Building Footprints

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599538

作者:Yi Li (Nanyang Technological University), Weiming Huang (Nanyang Technological University), Gao Cong (Nanyang Technological University), Hao Wang (Nanyang Technological University), Zheng Wang (Nanyang Technological University)

关键词:表示学习,对比学习,OpenStreetMap,城市区域,地理数据挖掘

RegionDCL

15. Multi-Temporal Relationship Inference in Urban Areas

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599440

作者:Shuangli Li (University of Science and Technology of China; Baidu Research), Jingbo Zhou (Baidu Research), Ji Liu (Baidu Research), Tong Xu (University of Science and Technology of China; State Key Laboratory of Cognitive Intelligenc), Enhong Chen (University of Science and Technology of China; State Key Laboratory of Cognitive Intelligence), Hui Xiong (The Hong Kong University of Science and Technology (Guangzhou); The Hong Kong University of Science and Technology)

关键词:关系推断,空间图

SEENet

16. A Study of Situational Reasoning for Traffic Understanding

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599246

作者:Jiarui Zhang (USC/ISI), Filip Ilievski (USC/ISI), Kaixin Ma (CMU), Aravinda Kollaa (USC/ISI), Jonathan Francis (Bosch), Alessandro Oltramari (Bosch)

关键词:问答模型、交通知识理解

17. Frigate: Frugal Spatio-temporal Forecasting on Road Networks

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599357

代码:https://github.com/idea-iitd/Frigate

作者:Mridul Gupta (Indian Institute of Technology Delhi), Hariprasad Kodamana (Indian Institute of Technology Delhi), Sayan Ranu (Indian Institute of Technology Delhi)

关键词:交通预测

解读:https://mp.weixin.qq.com/s/EjwWCRqmS5eZY4Q_Ue1aXQ

Frigate

其他

18. Graph Neural Processes for Spatio-Temporal Extrapolation

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599372

代码:https://github.com/hjf1997/STGNP

作者:Junfeng Hu (National University of Singapore), Yuxuan Liang (Hong Kong University of Science and Technology (Guangzhou)), Zhencheng Fan (University of Technology Sydney), Hongyang Chen (Zhejiang Lab), Yu Zheng (JD Intelligent Cities Research; JD iCity, JD Technology), Roger Zimmermann (National University of Singapore)

关键词:不确定性量化、神经过程、时空外推

STGNP

19. Deep Bayesian Active Learning for Accelerating Stochastic Simulation

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599300

代码:https://github.com/Rose-STL-Lab/Interactive-Neural-Process

作者:Dongxia Wu (University of California, San Diego), Ruijia Niu (University of California, San Diego), Matteo Chinazzi (Northeastern University), Alessandro Vespignani (Northeastern University), Yi-An Ma (University of California, San Diego), Rose Yu (University of California, San Diego)

关键词:不确定性量化、神经过程,贝叶斯主动学习

INP

20. Generative Causal Interpretation Model for Spatio-Temporal Representation Learning

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599363

代码:https://github.com/EternityZY/GCIM

作者:Yu Zhao (Beihang University), Pan Deng (Beihang University), Junting Liu (Beihang University), Xiaofeng Jia (Beijing Big Data Centre), Jianwei Zhang (Capinfo Company Limited)

关键词:生成因果模型、时空表示学习

GCIM

21. MM-DAG: Multi-task DAG Learning for Multi-Modal Data with Application for Traffic Congestion Analysis

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599436

代码:https://github.com/Lantian72/MM-DAG

作者:Tian Lan (Tsinghua University), Ziyue Li (University of Cologne), zhishuai Li (SenseTime Research), Lei Bai (Shanghai AI Laboratory), Man Li (The Hong Kong University of Science and Technology), Fugee Tsung (The Hong Kong University of Science and Technology (Guangzhou)), Wolfgang Ketter (University of Cologne), Rui Zhao (SenseTime Research), Chen Zhang (Tsinghua University)

关键词:因果学习、交通拥堵,有向无环图,多任务学习,多模态数据

22.Transferable Graph Structure Learning for Graph-Based Traffic Forecasting Across Cities

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599529

作者:Yilun Jin (Hong Kong University of Science and Technology), Kai Chen (Hong Kong University of Science and Technology), Qiang Yang (Hong Kong University of Science and Technology; WeBank)

关键词:迁移学习,交通预测

TransGTR

ADS Track

ADS track中有2个session中与时空数据(城市计算)紧密相关,还有一些其余session中有一些做的时空数据任务。

Transportation I

23. CBLab: Supporting the Training of Large-Scale Traffic Control Policies with Scalable Traffic Simulation

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599789

代码:https://github.com/caradryanl/CityBrainLab

作者:Chumeng Liang (Shanghai Jiao Tong University), Zherui Huang (Shanghai Jiao Tong University), Yicheng Liu (Shanghai Jiao Tong University), Zhanyu Liu (Shanghai Jiao Tong University), Guanjie Zheng (Shanghai Jiao Tong University), Hanyuan Shi (Independent Researchers), Kan Wu (Research Center for Intelligent Transportation, Zhejiang Lab), Yuhao Du (Independent Researchers), FULIANG LI (Baidu), Zhenhui Jessie Li (Yunqi Academy of Engineering)

关键词:信控优化,交通模拟,大规模数据

CBLab

24. M3PT: A Multi-Modal Model for POI Tagging

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599862

代码:https://github.com/DeqingYang/M3PT

作者:Jingsong Yang (Fudan University), Guanzhou Han (Alibaba Group), Deqing Yang (Fudan University), Jingping Liu (East China University of Science and Technology), Yanghua Xiao (Fudan University), Xiang Xu (Alibaba Group), Baohua Wu (Alibaba Group), Shenghua Ni (Alibaba Group)

关键词:多模态、POI、POI标记

M3PT

25. Understanding the Semantics of GPS-Based Trajectories for Road Closure Detection

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599926

作者:Jiasheng Zhang (University of Electronic Science and Technology of China), Kaiqiang An (Didi Chuxing Technology Co.), Guoping Liu (Didi Chuxing Technology Co.), Xiang Wen (Didi Chuxing Technology Co.), Runbo Hu (Didi Chuxing Technology Co.), Jie Shao (University of Electronic Science and Technology of China)

关键词:封闭道路检测、对比学习

T-Closure

26. A Data-Driven Region Generation Framework for Spatiotemporal Transportation Service Management

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599760

作者:Liyue Chen (Peking University), Jiangyi Fang (Huazhong University of Science and Technology), Zhe Yu (DiDi Chuxing), Yongxin Tong (Beihang University), Shaosheng Cao (DiDi Chuxing), Leye Wang (Peking University)

关键词:出行服务、空间数据管理

RegionGen

27. Hierarchical Reinforcement Learning for Dynamic Autonomous Vehicle Navigation at Intelligent Intersections

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599839

作者:Qian Sun (The Hong Kong University of Science and Technology), Le Zhang (Baidu Research), Huan Yu (The Hong Kong University of Science and Technology(Guangzhou); The Hong Kong University of Science and Technology), Weijia Zhang (The Hong Kong University of Science and Technology(Guangzhou)), Yu Mei (Baidu Inc.), Hui Xiong (The Hong Kong University of Science and Technology(Guangzhou); The Hong Kong University of Science and Technology)

关键词:信控优化、多智能体强化学习,动态车辆导航

NavTL

28. Road Planning for Slums via Deep Reinforcement Learning

链接:https://dl.acm.org/doi/10.1145/3580305.3599901

代码:https://github.com/tsinghua-fib-lab/road-planning-for-slums

作者:Yu Zheng (Department of Electronic Engineering, BNRist, Tsinghua University), Hongyuan Su (Department of Electronic Engineering, BNRist, Tsinghua University), Jingtao Ding (Department of Electronic Engineering, BNRist, Tsinghua University), Depeng Jin (Department of Electronic Engineering, BNRist, Tsinghua University), Yong Li (Department of Electronic Engineering, BNRist, Tsinghua University)

关键词:路径规划,贫民窟改造

29. Large-Scale Urban Cellular Traffic Generation via Knowledge-Enhanced GANs with Multi-Periodic Patterns

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599853

代码;https://github.com/shirdy/TrafficGeneration/tree/master/Urban/

作者:Shuodi Hui (Tsinghua University), Huandong Wang (Tsinghua University), Tong Li (Tsinghua University), Xinghao Yang (Tsinghua University), Xing Wang (China Mobile Research Institute), Junlan Feng (China Mobile Research Institute), Lin Zhu (China Mobile Research Institute), Chao Deng (China Mobile Research Institute), Pan Hui (Hong Kong University of Science and Technology), Depeng Jin (Tsinghua University), Yong Li (Tsinghua University)

关键词:蜂窝流量、知识图谱、GAN

Transportation II

30. SAInf: Stay Area Inference of Vehicles using Surveillance Camera Records

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599952

作者:Zhipeng Ma (Southwest Jiaotong University; JD iCity, JD Technology), Chuishi Meng (JD iCity, JD Technology), Huimin Ren (JD iCity, JD Technology), Sijie Ruan (Beijing Institute of Technology), Jie Bao (JD iCity, JD Technology), Xiaoting Wang (JD iCity, JD Technology), Tianrui Li (Southwest Jiaotong University), Yu Zheng (JD iCity, JD Technology)

关键词:轨迹数据挖掘、停留事件检测

31. Uncertainty-Aware Probabilistic Travel Time Prediction for On-Demand Ride-Hailing at DiDi

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599925

作者:Hao Liu (The Hong Kong University of Science and Technology (Guangzhou)), Wenzhao Jiang (The Hong Kong University of * Science and Technology (Guangzhou)), Shui Liu (Didichuxing Co. Ltd), Xi Chen (Didichuxing Co. Ltd)

关键词:不确定性、ETA、概率预测

ProbTTE

32. QTNet: Theory-Based Queue Length Prediction for Urban Traffic

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599890

作者:Ryu Shirakami (Sumitomo Electric System Solutions, Co., Ltd.), Toshiya Kitahara (Sumitomo Electric System Solutions, Co., Ltd.), Koh Takeuchi (Kyoto University), Hisashi Kashima (Kyoto University)

关键词:交通预测,物理指导的深度学习

QTNet

33. iETA: A Robust and Scalable Incremental Learning Framework for Time-of-Arrival Estimation

作者:Jindong Han (The Hong Kong University of Science and Technology), Hao Liu (The Hong Kong University of Science and Technology (Guangzhou); Guangzhou HKUST Fok Ying Tung Research Institute), Shui Liu (Didichuxing Co. Ltd.), Xi Chen (Didichuxing Co. Ltd.), Naiqiang Tan (Didichuxing Co. Ltd.), Hua Chai (Didichuxing Co. Ltd.), Hui Xiong (The Hong Kong University of Science and Technology (Guangzhou) ; Guangzhou HKUST Fok Ying Tung Research Institute)

关键词:增量学习、ETA、知识蒸馏,对抗训练

iETA

34. A Preference-Aware Meta-Optimization Framework for Personalized Vehicle Energy Consumption Estimation

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599767

代码:https://github.com/usail-hkust/Meta-Pec

作者:Siqi Lai (The Hong Kong University of Science and Technology (Guangzhou)), Weijia Zhang (The Hong Kong University of Science and Technology (Guangzhou)), Hao Liu (The Hong Kong University of Science and Technology (Guangzhou))

关键词:能量估计、元学习

Meta-Pec

35. Deep Transfer Learning for City-Scale Cellular Traffic Generation through Urban Knowledge Graph

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599801

作者:Zhang Shiyuan (Tsinghua University), Tong Li (Tsinghua University), Shuodi Hui (Tsinghua University), Guangyu Li (China Mobile Research Institute), Yanping Liang (China Mobile Research Institute), Li Yu (China Mobile Research Institute), Depeng Jin (Tsinghua University), Yong Li (Tsinghua University)

关键词:迁移学习、蜂窝流量,城市知识图谱

image-20240406140631932

36. Practical Synthetic Human Trajectories Generation Based on Variational Point Processes

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599888

作者:Qingyue Long (Department of Electronic Engineering, Tsinghua University), Huandong Wang (Department of Electronic Engineering, Tsinghua University), Tong Li (Department of Electronic Engineering, Tsinghua University), Lisi Huang (China Mobile Research Institute), Kun Wang (China Mobile Research Institute), Qiong Wu (China Mobile Research Institute), Guangyu Li (China Mobile Research Institute), Yanping Liang (China Mobile Research Institute), Li Yu (China Mobile Research Institute), Yong Li (Department of Electronic Engineering, Tsinghua University)

关键词:轨迹生成,VAE

解读:

其他

37. Detecting Vulnerable Nodes in Urban Infrastructure Interdependent Network

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599804

代码:https://github.com/tsinghua-fib-lab/KDD2023-ID546-UrbanInfra

作者:Jinzhu Mao (Tsinghua University), Liu Cao (Tsinghua University), Chen Gao (Tsinghua University), Huandong Wang (Tsinghua University), Fan Hangyu (Tsinghua University), Depeng Jin (Tsinghua University), Yong Li (Tsinghua University)

关键词:城市基础设置,强化学习,独立网络

38. ILRoute: A Graph-based Imitation Learning Method to Unveil Riders’ Routing Strategies in Food Delivery Service

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599844

作者:Tao Feng (Tsinghua University), Huan Yan (Tsinghua University), Huandong Wang (Tsinghua University), Wenzhen Huang (Tsinghua University), Yuyang Han (Tsinghua University), Hongsen Liao (Tsinghua University), Jinghua Hao (Tsinghua University), Yong Li (Tsinghua University)

关键词:外卖服务、模仿学习

39. DRL4Route: A Deep Reinforcement Learning Framework for Pick-Up and Delivery Route Prediction

链接:https://dl.acm.org/doi/abs/10.1145/3580305.3599811

代码:https://github.com/maoxiaowei97/DRL4Route

作者:Xiaowei Mao (Beijing Jiaotong University; Cainiao Network), Haomin Wen (Beijing Jiaotong University; Cainiao Network), Hengrui Zhang (Beijing Jiaotong University; Beijing Key Laboratory of Traffic Data Analysis and Mining), Huaiyu Wan (Beijing Jiaotong University; Beijing Key Laboratory of Traffic Data Analysis and Mining), Lixia Wu (Cainiao Network), Jianbin Zheng (Cainiao Network), Haoyuan Hu (Cainiao Network), Youfang Lin (Beijing Jiaotong University; Beijing Key Laboratory of Traffic Data Analysis and Mining)

关键词:物流配送,路线预测,强化学习

DRL4Route
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/545875.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

没灵感?设计不出电子画册?

当你坐在电脑前,手指敲击键盘,却感觉大脑一片空白,眼前的画面仿佛凝固在屏幕上,那么,你可能陷入了灵感枯竭的困境。设计一本电子画册,需要创意的火花和独特的构思,而当灵感涸泉,设计…

【Leetcode每日一题】 动态规划 - 下降路径最小和(难度⭐⭐)(55)

1. 题目解析 题目链接:931. 下降路径最小和 这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了. 2.算法原理 对于这类路径类问题,通常我们首先需要分析状态表示以及状态转移的过程。特别地,本题涉及…

如何安装Windows版VRTE2.1.0开发环境并进行开发

前言&#xff08;Abstract&#xff09; 本文档记录了如何安装Windows版VRTE2.1.0开发环境并进行开发&#xff0c;并且总结了当部署在安装了比较陈旧版本Linux内核&#xff08;如<4.5&#xff09;和库的板子上所遭遇的困难&#xff0c;如S32V234EVB。 Definitions and Abbre…

关于时频分析的一些事-答知乎问(一)

从信号的时频谱图中可以提取什么特征&#xff1f; 基于时频谱图的特征一般包括能量特征、时域和频域拓展特征以及时频内禀特征。 基于时频图的能量特征 基于时频图的特征中&#xff0c;能量特征是最简单的一种&#xff0c;通过分析时频谱图中的能量分布特性而获取信号的时频…

第011问 - 工作/学习老走神,如何提升注意力?(3个步骤提升注意力)

前言 你有没有遇到以下 2 个现象&#xff1a; 注意力被微信消息干扰&#xff1a;早上做好了计划&#xff0c;打算今天开发登录功能&#xff0c;结果一看微信 小A 给我发了一条消息&#xff0c;想都没想就给他回复了&#xff0c;这一回不要紧&#xff0c;他又给我发了&#xff0…

爆火 AI 硬件遭差评,Ai Pin 上市即翻车;Grok 推出首个多模态模型丨 RTE 开发者日报 Vol.184

开发者朋友们大家好&#xff1a; 这里是 「RTE 开发者日报」 &#xff0c;每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE&#xff08;Real Time Engagement&#xff09; 领域内「有话题的 新闻 」、「有态度的 观点 」、「有意思的 数据 」、「有思考的 文…

jenkins 启动linux节点时 控制台中文显示问号乱码

新增一个jenkins节点时&#xff0c;遇到了控制台中文输出问号的问题。 网上各种配置jenkins的全局变量&#xff0c;都不行。 最终是 节点列表 ->对应节点 -> 启动方式 -> 高级 添加JVM选项 -Dfile.encodingUTF-8

webots学习记录:R2023b如何导入stl文件

R2023b以及更新的版本的“文件”菜单中已经没有“Import 3D Model”这个选项了&#xff0c;用如下方法导入stl文件&#xff0c;

把数组中的所有空字符串移动到数组的前面

// 假设我们有一个数字数组和一个条件函数 // 条件函数返回true的元素将被移动到数组的前面 let numbers [1, 2, 3, 4, , 6, , 8, 9]; let condition (value) > value ; // 例如&#xff0c;我们想把偶数移动到前面// 使用sort函数实现 numbers.sort((a, b) > {let aS…

GIS GeoJSON数据获取

1、工具地址 DataV.GeoAtlas地理小工具系列 2、界面预览

【C++】unordered_map unordered_set 底层刨析

文章目录 1. 哈希表的改造2. unordered_map3. unordered_set C STL 库中&#xff0c;unordered_map 和 unordered_set 容器的底层为哈希表&#xff0c;本文将简单模拟哈希表&#xff08;哈希桶&#xff09;&#xff0c;unordered_map 和 unordered_set 只需封装哈希表的接口即可…

专业SEO优化指南:设置网站关键词的详细步骤

在网站SEO优化的过程中&#xff0c;关键词的设置是提升网站排名的关键步骤之一。那么&#xff0c;作为一名专业的SEO人员&#xff0c;如何有效地进行关键词设置呢&#xff1f;以下是一些详细的步骤&#xff1a; 1. 确定网站的核心关键词。 这需要深入理解网站的主题或产品。通…

稀碎从零算法笔记Day49-LeetCode:设计哈希集合

题型&#xff1a;模拟 链接&#xff1a;705. 设计哈希集合 - 力扣&#xff08;LeetCode&#xff09; 来源&#xff1a;LeetCode 题目描述 不使用任何内建的哈希表库设计一个哈希集合&#xff08;HashSet&#xff09;。 实现 MyHashSet 类&#xff1a; void add(key) 向哈…

封装原生html的table处理方法【参数类似eltable】

直接跑html即可 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>封装原生talbe</title> </…

“书写梦想 快乐成长”——沱江社区雏鹰活动(一)

为了丰富社区青少年精神文化生活&#xff0c;发挥社区服务青少年的功能和作用&#xff0c;2024年4月13日上午9点&#xff0c;中共新都区新都街道沱江社区委员会、沱江社区居民委员会联合成都市新都区领航社会工作服务中心举办的“书写梦想 快乐成长”——沱江社区雏鹰活动在沱江…

图灵奖简介及2023年获奖者Avi Wigderson的贡献

No.内容链接1Openlayers 【入门教程】 - 【源代码示例300】 2Leaflet 【入门教程】 - 【源代码图文示例 150】 3Cesium 【入门教程】 - 【源代码图文示例200】 4MapboxGL【入门教程】 - 【源代码图文示例150】 5前端就业宝典 【面试题详细答案 1000】 文章目录 2023年的…

✌粤嵌—2024/3/19—环形链表

代码实现&#xff1a; 快慢指针&#xff1a; /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ bool hasCycle(struct ListNode *head) {// 快慢指针&#xff1a;快指针每次走两步&#xff0c;慢指针每次走一步&a…

近屿OJAC带你解读:什么是GAN生成式对抗网络?

生成式对抗网络(GAN&#xff0c;英文全称Generative Adversarial Network)是一种深度学习模型&#xff0c; 由于其生成高质量、真实数据的能力&#xff0c;近年来获得了极大的关注。GAN已被用于广泛的应用 中&#xff0c;包括图像合成、⻛格转移和数据增强。 GAN的核心思想是通…

《springcloud alibaba》 六 微服务链路跟踪skywalking

目录 准备调整配置接入多个微服务网关项目调整order-seata项目stock-seata项目测试 接入网关微服务 skywalking持续化到mysql自定义链路跟踪pom .xmlorderControllerOrderServiceOrderDaoOrderTblMapper.xml测试 性能剖析日志tid打印pom.xmllogback-spring.xml日志收集启动项目…

Unity类银河恶魔城学习记录12-7-2 p129 Craft UI - part 2源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili UI_CraftWindow.cs using UnityEngine.UI; using TMPro; using UnityEngin…