贝叶斯公式中的先验概率、后验概率、似然概率

在这里插入图片描述

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C++、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关注公粽号 《机器和智能》 回复关键词 “python项目实战” 即可获取美哆商城视频资源!


博主介绍:
CSDN博客专家,CSDN优质创作者,CSDN实力新星,CSDN内容合伙人;
阿里云社区专家博主;
华为云社区云享专家;
51CTO社区入驻博主,掘金社区入驻博主,支付宝社区入驻博主,博客园博主。


贝叶斯公式中的先验概率、后验概率、似然概率

    • 贝叶斯公式(bayes)
    • 先验概率(prior probability)
    • 后验概率(posterior probability)
    • 似然概率(likelihood)


专栏:《贝叶斯估计》


贝叶斯公式(bayes)

首先给出贝叶斯(bayes)公式

在这里插入图片描述

贝叶斯公式为利用搜集到的信息对原有判断进行修正提供了有效手段。

贝叶斯推断的过程通常是这样的:首先,我们有一个未知随机变量的先验分布。然后,我们需要确定观测数据的分布模型,这是一个基于随机变量的条件概率。一旦我们观察到了数据的一个特定值之后,我们就可以开始运用贝叶斯法则去计算随机变量的后验分布。如果是连续型的随机变量,就把上面的概率质量函数替换成概率密度函数就可以了。

贝叶斯方法的核心就是通过先验知识不断更新后验概率密度来分析参数的可能性分布。如果继续进行实验,之前的后验概率密度就变成了先验知识,这样最终就会越来越接近参数的真实分布。需要注意的是,一般来讲如果当前的样本量比先验知识的样本量大很多,那么先验知识就可以忽略不计。另外还有一种先验知识并不是基于早期试验,而是专家意见,这种情况下也可以将其转换为先验概率密度。

先验概率(prior probability)

先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为“由因求果”问题中的“因”出现的概率。在贝叶斯统计中,某一不确定量p的先验概率分布是在考虑“观测数据”前,能表达p不确定性的概率分布。它旨在描述这个不确定量的不确定程度,而不是这个不确定量的随机性。这个不确定量可以是一个参数,或者是一个隐含变量(latent variable)。

也就是说,先验概率是不依靠观测数据的概率分布,也就是与其他因素独立的分布。或者说,先验概率是先于某个事件发生就知道的概率,可以简单理解为经验丰富的专家所进行的纯主观估计(猜测)。以在黑盒中取球为例,假设盒中有9个白球,1个黑球,随机取一个球,拿到的白球的概率是 P(白)=0.9,拿到黑球的概率是 P(黑)0.1,这就是先验概率。

另外,如果利用过去历史资料计算得到的先验概率,称为客观先验概率;如果历史资料无从取得或资料不完全时,凭人们的主观经验来判断而得到的先验概率,称为主观先验概率。 先验概率是通过古典概率模型来定义的,所以也叫做古典概率。古典概率模型要求满足两个条件:试验的所有可能结果是有限的;每一种可能结果出现的可能性(概率)相等。

后验概率(posterior probability)

后验概率(posterior probability)是指在得到“结果”的信息后重新修正的概率,是“执果寻因”问题中的"果"。在贝叶斯统计中,一个随机事件或者一个不确定事件的后验概率是在考虑和给出相关证据或数据后所得到的条件概率。同样,后验概率分布是一个未知量(视为随机变量)基于试验和调查后得到的概率分布。“后验”在本文中代表考虑了被测试事件的相关证据。

也就是说,后验概率是根据贝叶斯(bayes)定理,用先验概率和概率密度函数计算出来的。即”先验概率+观测=后验概率“,通过观测对先验概率更新后即为后验概率。同样以前面提到的黑盒取球为例,后验概率就是在我们已经拿出一个球,以随机变量 x 表示,此时,该球是白球的概率 P(黑|x)就是后验概率。同理,P(黑|观测)和P(白|观测)都是后验概率。

从上面可以看出, 先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础。事情还没有发生,要求这件事情发生的可能性的大小,是先验概率。事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率。

总结来说,后验概率是在已知”果“的前提下,得到重新修正后的”因“的概率,后验概率也叫做条件概率,可以通过贝叶斯公式来求解。

这里要额外介绍一下最大后验概率(Maximum a posteriori estimation, MAP),最大后验估计是根据经验数据获得对难以观察的量的点估计。与最大似然估计(Maximum likelihood estimation, MLE)类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中。故最大后验估计可以看做规则化的最大似然估计。

似然概率(likelihood)

在统计学中,似然函数(likelihood function)是一种关于统计模型参数的函数,也称作似然。给定输出 x 时,关于参数 θ 的似然函数 L(θ|x)(在数值上)等于给定参数 θ 后变量 X 的概率: L(θ|x)=P(X=x|θ) 。在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性(likelihood)。

似然函数在统计推测中发挥重要的作用,因为它是关于统计参数的函数,所以可以用来评估一组统计的参数,也就是说在一组统计方案的参数中,可以用似然函数做筛选。

似然概率其实很好理解,就是说我们现在有一堆数据,现在需要构建一组参数对这些数据建模,以使得模型能够尽可能地拟合这些数据。所以我们要做的就是从很多组参数中选出一组使得模型对数据的拟合程度最高,所以也常常说最大似然概率。

注意“似然”与“概率”意思相近,都是指某种事件发生的可能性,在非正式的语境下,“似然”会和“概率”混着用。但是严格区分的话,在统计上,二者是不同的。不同就在于,观察值 x 与参数 θ 的不同的角色。概率是用于描述一个函数,这个函数是在给定参数值的情况下的关于观察值的函数。而似然是用于在给定一个观察值时,关于用于描述参数的情况。在统计学中,“似然”和“概率”有着明确的区分:“概率”描述了给定模型参数后,描述结果的合理性,而不涉及任何观察到的数据;“似然”描述了给定了特定观测值后,描述模型参数是否合理。比如说抛掷硬币,我们抛掷一枚”均匀“的硬币,总共抛10,有五次为正面的可能性就是概率;如果已经抛了10次,其中5次为正面,那么这枚硬币”均匀“的可能性就是似然。

这里不得不提一下统计学中的两大学派了

频率派:频率派认为样本信息来自总体,通过对样本信息的研究可以合理地推断和估计总体信息。频率派的核心思想是基于大样本理论,将概率看作频率的极限,以样本观测值的频率为基础进行推断。频率派注重数据的重复抽样和统计量的性质,比如点估计、置信区间和假设检验等。频率派认为参数是客观存在的,不会改变,虽然未知,但却是固定值。最典型的便是极大似然估计(MLE)。

贝叶斯派:贝叶斯派认为任何一个未知量都可以看作是随机的,应该用一个概率分布去描述未知参数,而不是频率派认为的固定值。贝叶斯派的核心思想是先验信息与后验信息相结合,通过贝叶斯公式将先验信息与样本数据进行结合,得到后验分布,并以此作为对未知参数的推断。贝叶斯派强调主观先验信息的引入,因此不同人可能会有不同的先验分布,从而导致不同的推断结果。贝叶斯派注重个体的主观判断和背景信息,更加灵活和主观。最典型的便是最大后验估计(MAP)。


在这里插入图片描述
在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/545578.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VectorMap论文阅读

1. 摘要 自动驾驶系统需要对周围环境具有很好的理解,包括动态物体和静态高精度语义地图。现有方法通过离线手动标注来解决语义构图问题,这些方法存在严重的可扩展性问题。最近的基于学习的方法产生稠密的分割预测结果,这些预测不包含单个地图…

总结|性能优化思路及常用工具及手段

性能优化是降低成本的手段之一,每年大促前业务平台都会组织核心链路上的应用做性能优化,一方面提升系统性能,另外一方面对腐化的代码进行清理。现结合业务平台性能优化的经验,探讨一下性能优化的思路及常用工具及手段。性能优化本…

关于下载EsayOCR模型总是连接中断报错

关于下载EsayOCR模型总是连接中断报错 因为网络问题,自动下载总是失败报错,所以只好去网上手动下载训练好的模型。 以下是一些模型的下载地址:text detection model (CRAFT) chinese (traditional) model chinese (simplified) model jap…

TCP报文与三次握手四次断开、TCP最大连接数与文件打开数限制、keepalive、tcpdump、wireshark抓包分析工具

TCP报文 tcp详解、tcp与udp对比等 TCP:传输控制协议 UDP:用户数据报协议 源端口和目的端口字段:各占 2 字节(16位)。端口是运输层与应用层的服务接口。运输层的复用和分用功能都要通过端口才能实现。 序列号:在建立…

linux学习:进程(新建+运行某文件+退出处理函数+等待)

目录 api 创建新进程 注意 运行某文件 例子 注意 例子,等待进程 进程是由进程控制块、程序段、数据段三部分组成 进程有都有一个父进程,除了init,父进程可以创建子进程 每个进程都有一个PID,可以用ps来查看,等…

目标检测应用场景—数据集【NO.30】织物缺陷图像目标检测数据集

写在前面:数据集对应应用场景,不同的应用场景有不同的检测难点以及对应改进方法,本系列整理汇总领域内的数据集,方便大家下载数据集,若无法下载可关注后私信领取。关注免费领取整理好的数据集资料!今天分享…

2024第十五届蓝桥杯 JAVA B组

目录 前言:试题 A: 报数游戏试题 B: 类斐波那契循环数试题C:分布式队列 前言: 没参加这次蓝桥杯算法赛,十四届蓝桥杯被狂虐,对算法又爱又恨,爱我会做的题,痛恨我连题都读不懂的题😭,十四届填空只…

Linux基础(持续更新~)

常见的Linux目录 1、“/”:根目录 2、“/root”:root 用户的家目录 3、“/home/username ”:普通用户的家目录 4、“/etc”:配置文件目录(类似于Windows的注册表) 5、“/bin ”:命令目录 …

不再写满屏import导入

密密麻麻的import语句不仅仅是一种视觉上的冲击,更是对代码组织结构的一种考验。 我们是如何做到让import“占领满屏“的了,又该如何优雅地管理这些import语句呢? 本文将从产生大量import语句的原因、可能带来的问题以及如何优化和管理impo…

java版数字藏品深色UI仿鲸探数藏盲盒合成短视频卡牌模式支持高并发

Java版数字藏品深色UI仿鲸探数藏盲盒合成短视频卡牌模式支持高并发,是一种结合了Java技术、深色用户界面(UI)设计、数字藏品概念、盲盒合成玩法以及短视频卡牌模式的综合性应用。该模式旨在为用户提供一种新颖、有趣的数字藏品体验&#xff0…

深度学习pytorch实战第P3周--实现天气识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客** >- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)** 引言 1.复习上周 深度学习pytorch实战-第…

算法-反转单向链表

需求 思路 链表必有节点&#xff0c;节点两要素&#xff1a;当前元素值&#xff0c;下一个节点地址 import java.util.Scanner;// 定义一个单向链表 public class MyLinkedList<E> {int size 0;// 顶一个私有的内部类&#xff0c;表示链表的节点public class Node {E da…

pyinstaller后打开qt的exe报错Available platform

具体弹窗&#xff1a; 处理&#xff1a; 添加临时的环境变量&#xff1a; cd dir && set QT_PLUGIN_PATH.\platforms && XXX.exe

【JAVA基础篇教学】第十三篇:Java中I/O和文件操作

博主打算从0-1讲解下java基础教学&#xff0c;今天教学第十三篇&#xff1a;Java中I/O和文件操作。 理解 Java 中的 I/O&#xff08;输入/输出&#xff09;和文件操作对于开发各种类型的应用程序都至关重要。I/O 操作涉及从文件、网络或其他数据源中读取数据&#xff0c;以及…

动态数据源实现分表走shardingsphere,不分表走其他

shardingsphere从4.1.1升级到5.2.1但是还没有完结&#xff0c;因为在执行存储过程的时候&#xff0c;系统提示错误如下。shardingsphere是不支持存储过程呢&#xff0c;但项目中不能避免使用存储过程&#xff0c;因为有大量的数据需要初始化&#xff0c;这种情况该如何应对&…

Java反序列化Commons-Collections-CC1链

环境搭建 JDK8u71以下&#xff0c;这个漏洞已经被修复了&#xff0c;这个JDK的以上版本都修复了漏洞 JDK8u65 下载地址 https://www.oracle.com/cn/java/technologies/javase/javase8-archive-downloads.html这个时候来到 pom.xml 配置Maven依赖下载CommonsCollections3.2.…

UE5 GAS开发P31 将hud绑定在自己的角色上

在WidgetController内新建一个OverlayAuraWidgetController,然后修改HUD的初始状态 AuraHUD // Fill out your copyright notice in the Description page of Project Settings. #pragma once #include "CoreMinimal.h" #include "GameFramework/HUD.h" #…

“Python+”集成技术高光谱遥感数据处理与机器学习深度应用

涵盖高光谱遥感数据处理的基础、python开发基础、机器学习和应用实践。重点解释高光谱数据处理所涉及的基本概念和理论&#xff0c;旨在帮助学员深入理解科学原理。结合Python编程工具&#xff0c;专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题&#xf…

亚马逊测评必看:全面剖析亚马逊测评,你不知道的那些事!

随着电商市场的拓展&#xff0c;曹哥今天针对测评小白们写一些入门知识&#xff0c;今天就带大家从内到外的亚马逊这个平台讲一讲 首先这个行业里分别有几个角色&#xff1a; 1.卖家&#xff1a;所有的服务基本上都是围绕着卖家来转 2.买家&#xff1a;也就是购买下单上评论…

GpuMall镜像社区上线啦!超值福利抢鲜体验!

想快速体验最新最优镜像&#xff1f;想随手分享你的原创镜像&#xff1f;想寻找一个交流镜像的优质平台&#xff1f;我们听到了广大友友们迫切的心声&#xff01; GpuMall智算云 | 省钱、好用、弹性。租GPU就上GpuMall,面向AI开发者的GPU云平台 现在&#xff01;我们的镜像社…