Python-GEE遥感云大数据分析、管理与可视化及多领域案例实践应用

随着航空、航天、近地空间遥感平台的持续发展,遥感技术近年来取得显著进步。遥感数据的空间、时间、光谱分辨率及数据量均大幅提升,呈现出大数据特征。这为相关研究带来了新机遇,但同时也带来巨大挑战。传统的工作站和服务器已无法满足大区域、多尺度海量遥感数据处理需求。

为解决此问题,全球涌现出多个地球科学数据在线可视化计算和分析云平台,如谷歌Earth Engine(GEE)、航天宏图PIE Engine和阿里AI Earth等。其中,Earth Engine功能最为强大,能存取和同步MODIS、Landsat、Sentinel等卫星影像及NCEP等气象再分析数据集,并依托全球上百万台超级服务器提供强大运算能力。目前,该平台包含1000余个公共数据集,每月新增约2 PB数据,总容量超过100PB。与传统的处理影像工具(例如ENVI)相比,Earth Engine在处理海量遥感数据方面具有显著优势,提供了丰富的计算资源和巨大的云存储能力,节省大量数据下载和预处理时间。它代表了遥感数据计算、分析和可视化领域的世界前沿水平,堪称遥感领域的革命性进展。

如今,Earth Engine正受到越来越多科技工作者的关注,应用范围日益扩大。本文指在帮助科研工作者掌握Earth Engine的实际应用能力,以Python为基础,结合实例讲解平台搭建、影像数据分析、经典应用案例、本地与云端数据管理,以及云端数据论文出版级可视化等技能。为提高教学质量,本文将融入ChatGPT 4、Claude Opus、Gemini、文心一言等AI大模型辅助教学,为学员提供个性化建议和指导,深化课程内容掌握,并为未来自助学习提供高效的个性化体验。在最后,还将结合多年AI使用经验,深入分享AI大模型在科研辅助方面的多项实用技巧,包括文献查找、分析总结、论文撰写、图表解读、语言润色等,以助力科研人员在学术研究中取得更大突破并满足国际交流的需求。

第一章、理论基础

1、Earth Engine平台及应用、主要数据资源介绍

2、Earth Engine遥感云重要概念、数据类型与对象等

3、JavaScript与Python遥感云编程比较与选择

4、Python基础(语法、数据类型与程序控制结构、函数及类与对象等)

5、常用Python软件包((pandas、numpy、os等)介绍及基本功能演示(Excel/csv数据文件读取与数据处理、目录操作等)

6、JavaScript和Python遥感云API差异,学习方法及资源推荐

7、ChatGPT、文心一言等AI自然语言模型介绍及其遥感领域中的应用

第二章、开发环境搭建

1、本地端与云端Python遥感云开发环境介绍

2、本地端开发环境搭建

1)Anaconda安装,pip/conda软件包安装方法和虚拟环境创建等;

2)earthengine-api、geemap等必备软件包安装;

3)遥感云本地端授权管理;

4)Jupyter Notebook/Visual Studio Code安装及运行调试。 

3、云端Colab开发环境搭建

4、geemap介绍及常用功能演示

5、ChatGPT、文心一言帐号申请与主要功能演示,如遥感知识解答、数据分析处理代码生成、方案框架咨询等。

第三章、遥感大数据处理基础与AI大模型交互

1、遥感云平台影像数据分析处理流程介绍:介绍遥感云平台影像数据分析处理流程的基本框架,包括数据获取、数据预处理、算法开发、可视化等。

2、要素和影像等对象显示和属性字段探索:介绍如何在遥感云平台上显示和探索要素和影像等对象的属性字段,包括如何选择要素和影像对象、查看属性信息、筛选数据等。

3、影像/要素集的时间、空间和属性过滤方法:介绍如何对影像/要素集进行时间、空间和属性过滤,包括如何选择时间段、地理区域和属性条件,以实现更精确的数据分析。

4、波段运算、条件运算、植被指数计算、裁剪和镶嵌等:介绍如何在遥感云平台上进行波段运算、条件运算、植被指数计算、裁剪和镶嵌等操作,以实现更深入的数据分析。

5、Landsat/Sentinel-2等常用光学影像去云:介绍如何在遥感云平台上使用不同方法去除Landsat/Sentinel-2等常用光学影像中的云,以提高影像数据质量。

6、影像与要素集的迭代循环:介绍如何使用遥感云平台的迭代循环功能对影像和要素集进行批量处理,以提高数据分析效率。

7、影像数据整合(Reducer):介绍如何使用遥感云平台的Reducer功能将多个影像数据整合成一个数据集,以方便后续数据分析。

8、邻域分析与空间统计:介绍如何在遥感云平台上进行邻域分析和空间统计,以获取更深入的空间信息。

9、常见错误与代码优化:介绍遥感云平台数据分析过程中常见的错误和如何进行代码优化,以提高数据分析效率和精度。

10、Python遥感云数据分析专属包构建:介绍如何使用Python在遥感云平台上构建数据分析专属包,以方便多次使用和分享分析代码。

第四章、典型案例操作实践与AI大模型交互

11、机器学习分类算法案例:本案例联合Landsat等长时间序列影像和机器学习算法展示国家尺度的基本遥感分类过程。具体内容包括研究区影像统计、空间分层随机抽样、样本随机切分、时间序列影像预处理和合成、机器学习算法应用、分类后处理和精度评估等方面。

12、决策树森林分类算法案例:本案例联合L波段雷达和Landsat光学时间序列影像,使用决策树分类算法提取指定地区2007-2020年度森林分布图,并与JAXA年度森林产品进行空间比较。案例涉及多源数据联合使用、决策树分类算法构建、阈值动态优化、分类结果空间分析等方面。

13、洪涝灾害监测案例:本案例基于Sentinel-1 C波段雷达等影像,对省级尺度的特大暴雨灾害进行监测。案例内容包括Sentinel-1 C影像处理、多种水体识别算法构建、影像差异分析以及结果可视化等方面。。

14、干旱遥感监测案例:本案例使用40年历史的卫星遥感降雨数据产品如CHIRPS来监测省级尺度的特大干旱情况。案例内容包括气象数据基本处理、年和月尺度数据整合、长期平均值LPA/偏差计算,以及数据结果可视化等方面。

15、物候特征分析案例:本案例基于Landsat和MODIS等时间序列影像,通过植被指数变化分析典型地表植被多年的物候差异(样点尺度)和大尺度(如中国)的物候空间变化特征。案例内容包括时间序列影像合成、影像平滑(Smoothing)与间隙填充(Gap-filling)、结果可视化等方面。

16、森林植被健康状态监测案例:本案例利用20年的MODIS植被指数,对选定区域的森林进行长期监测,并分析森林植被的绿化或褐变情况。涉及影像的连接和合成、趋势分析、空间统计以及可视化等方法。

17、生态环境质量动态监测案例:该案例使用RSEI遥感生态指数和Landsat系列影像,对选定城市的生态状况进行快速监测。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。

第五章、输入输出及数据资产高效管理与AI大模型交互

1. 本地数据与云端交互:介绍如何将本地端csv、kml、矢量和栅格数据与云端数据相互转换,并讲解数据导出的方法。

2. 服务器端数据批量下载:包括直接本地下载、影像集批量下载,以及如何快速下载大尺度和长时间序列数据产品,例如全球森林产品和20年的MODIS数据产品等。。

3. 本地端数据上传与属性设置:包括earthengine命令使用,介绍如何上传少量本地端矢量与栅格数据并设置属性(小文件),以及如何批量上传数据并自动设置属性,还将介绍如何使用快速上传技巧上传超大影像文件,例如国产高分影像。

4、个人数据资产管理:介绍如何使用Python和earthengine命令行来管理个人数据资产,包括创建、删除、移动、重命名等操作,同时还会讲解如何批量取消上传/下载任务。

第六章、云端数据论文出版级可视化与AI大模型交互

1. Python可视化及主要软件包简介:介绍matplotlib和seaborn可视化程序包,讲解基本图形概念、图形构成以及快速绘制常用图形等内容。

2. 研究区地形及样地分布图绘制:结合本地或云端矢量文件、云端地形数据等,绘制研究区示意图。涉及绘图流程、中文显示、配色美化等内容,还会介绍cpt-city精美调色板palette在线下载与本地端应用等。

3. 研究区域影像覆盖统计和绘图:对指定区域的Landsat和Sentinel等系列影像的覆盖数量、无云影像覆盖情况进行统计,绘制区域影像统计图或像元级无云影像覆盖专题图。

4. 样本光谱特征与物候特征等分析绘图:快速绘制不同类型样地的光谱和物候特征,动态下载并整合样点过去30年缩略图(thumbnails)和植被指数时间序列等。

5. 分类结果专题图绘制及时空动态延时摄影Timelapse制作:单幅或多幅分类专题图绘制及配色美化,制作土地利用变化清晰的Timelapse,还会介绍动画文字添加等内容。

6、分类结果面积统计与绘图:基于云端的分类结果和矢量边界文件,统计不同区域不同地类面积,提取统计结果,以不同图形展示统计面积;制作土地利用变化统计绘图等。

第七章、AI大模型与科研辅助经验分享

1、文献总结:本部分将演示AI如何帮助研究人员高效提取文献要点,包括快速识别关键变量、研究方法和主要发现,旨在提升文献审阅的效率和质量。

2、文献查找:学习如何利用AI工具从海量数据中筛选和推荐与研究议题相关的论文,从而加速文献回顾的过程并确保研究的全面性。

3、框架生成:本节将指导如何运用AI工具构建科研论文的大纲框架,并提供结构和逻辑的修改建议,以加强论文的条理性和说服力。

4、图表生文:介绍AI如何辅助解读复杂的科研数据和图表,并将这些信息融入论文撰写中,增强论文的数据支撑力和论证的准确性。

5、中译英提升:探讨AI翻译工具如何帮助研究者将中文科研材料准确、流畅地转换为英文,满足国际学术交流的需求。

6、中英文润色:通过AI工具优化中文和英文论文的语言表达和学术措辞,提升论文的整体质量,使其更符合专业的学术标准和出版要求。

图片

图片

图片

图片

图片

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247685033&idx=1&sn=9038e7da27e2e9133c21cb8b197b160b&chksm=fa774c94cd00c5820553906839ed1b33e739d530b951d72e547f00aa2565d00ac1c85f4c43b5&token=1234062325&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/544631.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】泛型(分享重点)

什么是泛型&#xff1f; 泛型就是适用于许多许多类型&#xff0c;对类型参数化。 怎么创建一个泛型呢 class 泛型类名称<类型形参列表> { // 这里可以使用类型参数 } class ClassName<T1, T2, ..., Tn> { } class 泛型类名称<类型形参列表> extends 继承类…

Hadoop 3.1.3

第1章 Hadoop概述 1.1 Hadoop是什么 1.2 Hadoop发展历史&#xff08;了解&#xff09; 1.3 Hadoop三大发行版本&#xff08;了解&#xff09; Hadoop三大发行版本&#xff1a;Apache、Cloudera、Hortonworks。 Apache版本最原始&#xff08;最基础&#xff09;的版本&#x…

AI大模型探索之路-提升篇2:一文掌握AI大模型的核心-注意力机制

目录 前言 一、注意力机制简介 二、注意力机制的工作原理 三、注意力机制的变体 1、自注意力&#xff08;Self-Attention&#xff09; 2、双向注意力&#xff08;Bidirectional Attention&#xff09; 3、多头注意力&#xff08;Multi-Head Attention&#xff09; ​4、…

卫星影像联合无人机实现农业保险全生命周期监管监测

随着科技的进步&#xff0c;农业保险监管系统的发展日新月异。特别是近年来&#xff0c;随着卫星技术与无人机技术的结合&#xff0c;为农业保险监管系统带来了前所未有的革新。本文将深入探讨如何利用卫星与无人机方案构建高效的农业保险监管系统&#xff0c;并结合实例进行说…

网络篇06 | 应用层 自定义协议

网络篇06 | 应用层 自定义协议 01 固定协议设计&#xff08;简化版&#xff09;1&#xff09;总体设计2&#xff09;值设计 02 可变协议设计&#xff08;进阶版&#xff09;1&#xff09;固定头&#xff08;Fixed Header&#xff09;2&#xff09;可变头&#xff08;Variable H…

51单片机-ADC模数转换实验-电压值

一 主要知识点及分析: 1.这里是用到的XPT2046芯片,芯片详细说明自行查阅; 2.这里有两种模式,一般外设的转换用的是单端模式,在使用触摸屏的时候我们选择差分模式; 3.这张图有就是时序图,读写都需要在这上面进行编写代码, 3.1 写8位代码:主要是将传入的控制命令进行写入; 3.2 读…

C# Solidworks二次开发:相机访问相关API详解

大家好&#xff0c;今天要介绍的API为相机相关的API&#xff0c;这篇文章比较适合女孩子&#xff0c;学会了相机就会拍照了&#xff0c;哈哈。 下面是要介绍的API: &#xff08;1&#xff09;第一个为GetFocalDistance&#xff0c;这个API的含义为获取相机的焦距&#xff0c;…

光速论文靠谱不 #学习方法#笔记

光速论文是一款优秀的论文写作工具&#xff0c;许多学生和学者都对它赞不绝口。那么&#xff0c;光速论文靠谱吗&#xff1f;答案当然是肯定的&#xff01; 首先&#xff0c;光速论文具有强大的查重和降重功能。它能够帮助用户快速检测论文中的抄袭内容&#xff0c;并提供专业的…

小程序变更主体影响使用吗?

小程序迁移变更主体有什么作用&#xff1f;有些小程序开发者&#xff0c;因为业务调整&#xff0c;或者公司更换&#xff0c;需要更换小程序主体&#xff01;但是很多开发者对于小程序更换主体的操作流程并不熟悉&#xff0c;于是我们专门准备了这篇&#xff0c;关于小程序更换…

2024年航海制造工程与海洋工程国际会议(ICNMEME2024)

2024年航海制造工程与海洋工程国际会议(ICNMEME2024) 会议简介 2024年航海制造工程与海洋工程国际会议(ICNMEME2024)旨在将研究人员、工程师、科学家和行业专业人士聚集在一个开放论坛上&#xff0c;展示他们在导航制造工程与海洋工程领域的激励研究和知识转移理念。然而&…

嵌入式MCU BootLoader开发配置详细笔记教程

目录 一、BootLoader基础 二、BootLoader原理及配置 三、BootLoader程序 bootloader.h bootloader.c 四、Application1 用户程序 application1.h application1.c 五、Application2 用户程序 application2.h 六、程序运行效果 七、工程文件Demo 一、BootLoader基础 …

C++ | Leetcode C++题解之第29题两数相除

题目&#xff1a; 题解&#xff1a; class Solution { public:int divide(int dividend, int divisor) {// 考虑被除数为最小值的情况if (dividend INT_MIN) {if (divisor 1) {return INT_MIN;}if (divisor -1) {return INT_MAX;}}// 考虑除数为最小值的情况if (divisor I…

C++ 之 【类与对象】从入门到精通一条龙服务 最终篇(static成员、友元、匿名对象。。。)

&#x1f4b4;到用时方恨早&#xff0c;白首方悔挣的少 车到山前没有路&#xff0c;悬崖勒马勒不住 一、再谈构造函数 1.构造函数体赋值 2.初始化列表 3.explicit关键字 二、Static成员 1.概念 2.特性 三、友元 1.友元函数 2.友元类 四、内部类 五、匿名对象 六、…

项目5-博客系统5+程序部署(Linux基本使用)

1.Linux的基本使用 1.1 Linux 是什么 Linux 是⼀个操作系统. 和 Windows 是 "并列" 的关系. 1.2 Unix & Linux 发展历程图 1.1969−1970 年, ⻉尔实验室的 Dennis Ritchie (左) 和 Ken Tompson (右) 开发了 Unix 操作系统. 2. Unix ⽕了之后, 衍⽣出很多的分⽀…

jvm参数介绍

JVM参数是指在Java应用程序启动时&#xff0c;通过命令行或者配置文件等方式传递给JVM的一些参数和选项。这些参数主要用于配置JVM的内存、垃圾回收、线程等相关参数。下面是一些常见的JVM参数简介&#xff1a; 1. -Xmx&#xff1a;设置应用程序可使用的最大内存量&#xff0c;…

C++ | Leetcode C++题解之第30题串联所有单词的子串

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<int> findSubstring(string &s, vector<string> &words) {vector<int> res;int m words.size(), n words[0].size(), ls s.size();for (int i 0; i < n && i m …

文献阅读:Viv:在 web 上多尺度可视化高分辨率多重生物成像数据

文献介绍 「文献题目」 Viv: multiscale visualization of high-resolution multiplexed bioimaging data on the web 「研究团队」 Nils Gehlenborg&#xff08;美国哈佛医学院&#xff09; 「发表时间」 2022-05-11 「发表期刊」 Nature Methods 「影响因子」 47.9 「DOI…

GitHub repository - Code - Issues - Pull Requests - Wiki

GitHub repository - Code - Issues - Pull Requests - Wiki 1. Code2. Issues3. Pull Requests4. WikiReferences 1. Code 显示该仓库中的文件列表。仓库名下方是该仓库的简单说明和 URL. 2. Issues 用于 BUG 报告、功能添加、方向性讨论等&#xff0c;将这些以 Issue 形式进…

初识DOM

目录 前言: 1.初识DOM: 1.1DOM树: 1.2节点&#xff08;Node&#xff09;: 1.2.1元素节点&#xff1a; 1.2.2属性节点&#xff1a; 1.2.3文本节点&#xff1a; 1.3Document对象: 2.操作网页元素: 2.1找出元素&#xff1a; 2.1.1document.getElementById(id)&#xff1…

【入门】时钟旋转

时间限制 : 1 秒 内存限制 : 128 MB 时钟上面的时针从m时走到n时旋转了多少度&#xff1f;&#xff08;m<n&#xff0c;且m和n都是1~12之间的整数&#xff09; 输入 2个整数m和n 输出 一个整数代表时针旋转的度数 样例 输入 1 4 输出 90 提示 基础问题 #includ…