YOLOV5 + 双目相机实现三维测距(新版本)

文章目录

  • YOLOV5 + 双目相机实现三维测距(新版本)
    • 1. 项目流程
    • 2. 测距原理
    • 3. 操作步骤和代码解析
    • 4. 实时检测
    • 5. 训练
    • 6. 源码下载

YOLOV5 + 双目相机实现三维测距(新版本)

本文主要是对此篇文章做一些改进,以及解释读者在复现过程中遇到的问题,完整代码在文章末尾

1. 项目流程

  1. YOLOv5检测目标并提取其中心像素点坐标
  2. 双目相机经过系列操作将像素点坐标转为深度三维坐标
  3. 根据三维坐标计算距离
  4. 将深度信息画图显示

2. 测距原理

如果想了解双目测距原理,请移步该文章 双目三维测距(python)

3. 操作步骤和代码解析

下载 yolov5 6.1版本源码 ,之前用的是5.0源码,代码太旧出现了不少问题,故更新了一下,创建一个detect-01.py文件,文件里部分代码解析如下:

双目相机参数stereoconfig.py
双目相机标定误差越小越好,我这里误差为0.1,尽量使误差在0.2以下

import numpy as np
# 双目相机参数
class stereoCamera(object):
    def __init__(self):

        self.cam_matrix_left = np.array([[1101.89299, 0, 1119.89634],
                                         [0, 1100.75252, 636.75282],
                                         [0, 0, 1]])
        self.cam_matrix_right = np.array([[1091.11026, 0, 1117.16592],
                                          [0, 1090.53772, 633.28256],
                                          [0, 0, 1]])

        self.distortion_l = np.array([[-0.08369, 0.05367, -0.00138, -0.0009, 0]])
        self.distortion_r = np.array([[-0.09585, 0.07391, -0.00065, -0.00083, 0]])

        self.R = np.array([[1.0000, -0.000603116945856524, 0.00377055351856816],
                           [0.000608108737333211, 1.0000, -0.00132288199083992],
                           [-0.00376975166958581, 0.00132516525298933, 1.0000]])

        self.T = np.array([[-119.99423], [-0.22807], [0.18540]])
        self.baseline = 119.99423  

测距代码部分解析

这一部分我直接计算了目标检测框中心点的深度值,把中心点的深度值当作了距离。你也可以写个循环,计算平均值或者中位数,把他们当作深度值

if (accel_frame % fps_set == 0):
    t3 = time.time()  
    thread.join()
    points_3d = thread.get_result()
    t4 = time.time()  
    a = points_3d[int(y_0), int(x_0), 0] / 1000
    b = points_3d[int(y_0), int(x_0), 1] / 1000
    c = points_3d[int(y_0), int(x_0), 2] / 1000
    dis = ((a**2+b**2+c**2)**0.5)

主代码detect-01.py
加入了多线程处理,加快处理速度

import argparse
import os
import sys
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
from stereo.dianyuntu_yolo import preprocess, undistortion, getRectifyTransform, draw_line, rectifyImage, \
    stereoMatchSGBM
from stereo import stereoconfig_040_2
from stereo.stereo import stereo_threading, MyThread

@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        ):
    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0

    config = stereoconfig_040_2.stereoCamera()
    # 立体校正
    map1x, map1y, map2x, map2y, Q = getRectifyTransform(720, 1280, config)
    for path, im, im0s, vid_cap, s in dataset:
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
################################################ start ##############################################
            thread = MyThread(stereo_threading, args=(config, im0, map1x, map1y, map2x, map2y, Q))
            thread.start()

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if (0 < xyxy[2] < 1280):
                        if save_txt:  # Write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                            with open(txt_path + '.txt', 'a') as f:
                                f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        x_center = (xyxy[0] + xyxy[2]) / 2
                        y_center = (xyxy[1] + xyxy[3]) / 2
                        x_0 = int(x_center)
                        y_0 = int(y_center)
                        if (0 < x_0 < 1280):
                            x1 = xyxy[0]
                            x2 = xyxy[2]
                            y1 = xyxy[1]
                            y2 = xyxy[3]
                            thread.join()
                            points_3d = thread.get_result()
                            a = points_3d[int(y_0), int(x_0), 0] / 1000
                            b = points_3d[int(y_0), int(x_0), 1] / 1000
                            c = points_3d[int(y_0), int(x_0), 2] / 1000
                            distance = ((a ** 2 + b ** 2 + c ** 2) ** 0.5)

                            if (distance != 0):  ## Add bbox to image
                                c = int(cls)  # integer class
                                label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                                annotator.box_label(xyxy, label, color=colors(c, True))
                                print('点 (%d, %d) 的 %s 距离左摄像头的相对距离为 %0.2f m' % (x_center, y_center, label, distance))
                                text_dis_avg = "dis:%0.2fm" % distance
                                # only put dis on frame
                                cv2.putText(im0, text_dis_avg, (int(x1 + (x2 - x1) + 5), int(y1 + 30)), cv2.FONT_ITALIC,
                                            1.2, (255, 255, 255), 3)
                        if save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
                cv2.resizeWindow("Webcam", 1280, 480)
                cv2.moveWindow("Webcam", 0, 100)
                cv2.imshow("Webcam", im0)
                cv2.waitKey(1)
                # cv2.imshow(str(p), im0)
                # cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
    parser.add_argument('--source', type=str, default=ROOT / 'data/images/a1.mp4', help='file/dir/URL/glob, 0 for webcam')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(FILE.stem, opt)
    return opt


def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

执行detect-01.py,检测结果如下:
在这里插入图片描述

4. 实时检测

(1)如想要调用摄像头检测,直接把detect-01.py里的

parser.add_argument('--source', type=str, default=ROOT / 'data/images/a1.mp4', help='file/dir/URL/glob, 0 for webcam')

改为

parser.add_argument('--source', type=str, default=ROOT / '0')

(2)需要注意的是,代码设置的是检测分辨率为2560x720大小的图或者视频,直接调用摄像头,摄像头分辨率不一定为2560x720,因此需要设定一下打开摄像头默认分辨率

打开utils/dataset.py文件,找到class LoadStreams:这个类

for i, s in enumerate(sources):  # index, source
    # Start thread to read frames from video stream
    st = f'{i + 1}/{n}: {s}... '
    if 'youtube.com/' in s or 'youtu.be/' in s:  # if source is YouTube video
        check_requirements(('pafy', 'youtube_dl==2020.12.2'))
        import pafy
        s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
    s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
    cap = cv2.VideoCapture(s)
    assert cap.isOpened(), f'{st}Failed to open {s}'
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
    self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback
    self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback

    _, self.imgs[i] = cap.read()  # guarantee first frame
    self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
    LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
    self.threads[i].start()
LOGGER.info('')  # newline

改为

for i, s in enumerate(sources):
     # Start the thread to read frames from the video stream
     print(f'{i + 1}/{n}: {s}... ', end='')
     cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
     ####################################################################################################
     imageWidth = 2560
     imageHeight = 720
     cap.set(cv2.CAP_PROP_FRAME_WIDTH, imageWidth)
     cap.set(cv2.CAP_PROP_FRAME_HEIGHT, imageHeight)
     assert cap.isOpened(), f'Failed to open {s}'
     w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
     h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
     fps = 24#cap.get(cv2.CAP_PROP_FPS) % 100
     _, self.imgs[i] = cap.read()  # guarantee first frame
     thread = Thread(target=self.update, args=([i, cap]), daemon=True)
     print(f' success ({w}x{h} at {fps:.2f} FPS).')
     thread.start()
 print('')  # newline

这样就设置好了

5. 训练

数据集采用YOLO格式,目录如下:

dataset
    |
     coco
         |
          images
                |
                train2017
                         |
                         1.jpg
                         2.jpg
                val2017
                       |
                         11.jpg
                         22.jpg
           labels
                |
                train2017
                         |
                         1.txt
                         2.txt
                val2017
                       |
                         11.txt
                         22.txt

打开data/coco.yaml文件,把里边的内容修改如下(这里训练两个类别)

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
#     └── coco128  ← downloads here
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ./dataset/coco  # dataset root dir
train: images/train2017  # train images (relative to 'path') 128 images
val: images/train2017  # val images (relative to 'path') 128 images
test:  # test images (optional)

# Classes
nc: 2  # number of classes
names: ['person', 'bicycle']  # class names

同时把训练用的model/yolov5s.yaml文件的类别改成与上边对应的类别数,接下来运行train.py即可
请添加图片描述

6. 源码下载

下载链接:https://download.csdn.net/download/qq_45077760/89136394

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/544568.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微软搭建零售新媒体创意工作室大举抢占数字营销广告市场

“微软新零售创意工作室新平台利用生成式人工智能&#xff0c;在几秒钟内轻松定制横幅广告。零售媒体预计到2026年将成为一个价值1000亿美元的行业。” 零售媒体在过去几年中发展迅速。根据eMarketerOpens在新窗口的数据&#xff0c;预计到2024年&#xff0c;仅美国的零售媒体…

基于粒子群优化的配电网重构

一、配电网重构原理 配电网重构是指在满足配电网运行基本约束的前提下&#xff0c;通过改变配电网中一个或多个开关的状态对配电网中一个或多个指标进行优化。通过配电网重构&#xff0c;可以在不增加设备投资的情况下&#xff0c;充分发挥配电系统的潜力&#xff0c;提高系统…

【C语言】每日一题,快速提升(1)!

调整数组使奇数全部都位于偶数前面 题目&#xff1a; 输入一个整数数组&#xff0c;实现一个函数 来调整该数组中数字的顺序使得数组中所有的奇数位于数组的前半部分 所有偶数位于数组的后半部分 解题思路&#xff1a; 给定两个下标left和right&#xff0c;left放在数组的起始…

【Web】VS Code 插件及快捷键

专栏文章索引&#xff1a;Web 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 目录 一、安装步骤 二、插件 1.Chinese (Simplified) (简体中文) 2.open in browser 3.vscode-icons 4.Live Server 5.Live Server Preview 6.翻译(英汉词典) 三、快捷键 1.缩放代码…

Vivado ILA Capture Control 模式与 Advanced Trigger的功能使用以及TSM(触发状态机)的编写

文章目录 一、前言二、ILA的基本功能使用以及局限性2.1 ILA的调用2.2 ILA波形窗口观察2.3 ILA基本功能的局限性&#xff1a;如何观测低频的数据&#xff1f; 二、Capture Control 功能介绍三、Advanced Trigger功能以及TSM编写3.1 触发状态机的写法3.2 设置Advanced Trigger3.3…

MYSQL中的ER图

1.首先学习如何设计数据&#xff0c;在此之前我们先学会画出我们的规划图 利用Axure RP 9 然后进行以后的操作。其实非常简单看看就会

NODE MCU (ESP8285-ESP8266)用Arduino lDE 2.3.2烧录系统后串口监控不打印问题

问题: Arduino lDE 2.3.2,集合DOIT ESP-Mx DevKit板子,烧录代码后,串口监视器 打印不出来调试数据 分析: Arduino lDE 2.3.2工具提示,不支持调试 板载flash按钮无需按下,即可烧录系统,由于烧录和调试共用串口,所以怀疑是Arduino lDE 2.3.2在烧录时设置了串口的配置…

Hello 算法10:搜索

https://www.hello-algo.com/chapter_searching/binary_search/ 二分查找法 给定一个长度为 n的数组 nums &#xff0c;元素按从小到大的顺序排列&#xff0c;数组不包含重复元素。请查找并返回元素 target 在该数组中的索引。若数组不包含该元素&#xff0c;则返回 -1 。 # 首…

Ubuntu 22.04 开机自动挂载webdav - 设置开机自启脚本 - 解决坚果云webdav无写入权限

效果图&#xff1a; 前言&#xff1a; 1&#xff09;亲测/etc/fstab的办法没有成功自动挂载&#xff0c;换成传统的rc.local可以解决&#xff1b; 2&#xff09;rc-local.service是系统自带的一个开机自启服务&#xff0c;但是在 ubuntu 20.04 上&#xff0c;该服务默认没有开…

基于物理原理的p-GaN HEMT动态导通电阻SPICE建模

来源&#xff1a;Physics-Based SPICE Modeling of Dynamic ON-State Resistance of p-GaN HEMTs&#xff08;TPEL 23年&#xff09; 摘要 这封快报介绍了一种新型基于物理学原理的SPICE建模方法&#xff0c;专门针对氮化镓基p型门极高电子迁移率晶体管&#xff08;p-GaN HEM…

route路由命令、ip route命令、default默认路由(0.0.0.0 )

文章目录 概述3. route语法3.1 查看路由表3.1 参数解释 3.2 添加路由记录3.2.1 添加到达单个目标主机的路由3.2.2 添加到达目标网络的路由3.2.3 添加默认路由 3.3 删除路由记录 4. ip route4.1 查看路由4.1.1 不带条件4.1.2 带条件4.1.3 字段解释4.1.3 字段解释 4.2 添加路由4.…

基于Springboot+Vue的Java项目-高校心理教育辅导系统开发实战(附演示视频+源码+LW)

大家好&#xff01;我是程序员一帆&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &am…

发布 Chrome/Edge浏览器extension扩展到应用商店

Chrom Extension发布流程 创建和发布自定义 Chrome 应用和扩展程序&#xff1a;https://support.google.com/chrome/a/answer/2714278?hlzh-Hans 在 Chrome 应用商店中发布&#xff1a;https://developer.chrome.com/docs/webstore/publish?hlzh-cn 注册开发者帐号&#…

Eclipse+Java+Swing实现图书信息管理系统-TXT存储信息

一、系统介绍 1.开发环境 操作系统&#xff1a;Win10 开发工具 &#xff1a;Eclipse2021 JDK版本&#xff1a;jdk1.8 存储方式&#xff1a;Txt文件存储 2.技术选型 JavaSwingTxt 3.功能模块 4.工程结构 5.系统功能 1.系统登录 管理员可以登录系统 2.查看图书 管理员…

软件无线电安全之HackRF One初探

HackRF介绍 HackRF是一款开源软件无线电&#xff08;SDR&#xff09;平台&#xff0c;由Great Scott Gadgets公司推出。它具有广泛的频率覆盖范围&#xff0c;从1 MHz到6 GHz&#xff0c;支持大部分常见的无线通信频段。采用软件定义无线电技术&#xff0c;HackRF提供了自定义…

vue快速入门(二十四)输入停顿再进行响应

注释很详细&#xff0c;直接上代码 上一篇 新增内容 使用侦听器监视数据变化情况使用clearTimeout与定时器实现停顿一段时间再操作内容 源码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"view…

【王道数据结构笔记】顺序表的动态分配代码分析

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;数据结构 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

docker 安装 nginx + httpd + php-fpm

原文地址&#xff1a;http://www.taoluyuan.com/index.php/archives/30/#2 展示 1.安装 1.1安装docker 1.2安装nginx 1.3安装apache-httpd 1.4安装php-fpm 2.配置nginx反向代理 httpdphp-fmp 1.安装 1.1安装docker 移除旧的版本&#xff1a; sudo yum remove docker 安装…

redis-plus-plus的安装与使用

本文参考自 redis-plus-plus 官方文档 一、安装 因为redis-plus-plus是基于hiredis封装的&#xff0c;所以需要先安装hiredis&#xff1b; 第一步&#xff1a;安装hiredis # 使用git下载源代码 git clone https://github.com/redis/hiredis.git # 进入源代码主目录 cd hired…

ChatGPT在线网页版

ChatGPT镜像 今天在知乎看到一个问题&#xff1a;“平民不参与内测的话没有账号还有机会使用ChatGPT吗&#xff1f;” 从去年GPT大火到现在&#xff0c;关于GPT的消息铺天盖地&#xff0c;真要有心想要去用&#xff0c;途径很多&#xff0c;别的不说&#xff0c;国内GPT的镜像…