【机器学习】Feature scaling and Learning Rate (Multi-variable)

Feature scaling and Learning Rate

导入所需的库

import numpy as np
np.set_printoptions(precision=2)
import matplotlib.pyplot as plt
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'; 
plt.style.use('./deeplearning.mplstyle')
from lab_utils_multi import  load_house_data, compute_cost, run_gradient_descent 
from lab_utils_multi import  norm_plot, plt_contour_multi, plt_equal_scale, plot_cost_i_w

1、数据集

Size (sqft)Number of BedroomsNumber of floorsAge of HomePrice (1000s dollars)
9522165271.5
12443264232
19473217509.8

利用以上表格中的数据构建一个线性模型,这样我们可以预测房屋的价格(1200 sqft, 3 bedrooms, 1 floor, 40 years old)

# load the dataset
X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']

绘制每个房子特征与房屋价格之间的关系图

fig,ax=plt.subplots(1, 4, figsize=(12, 3), sharey=True)
for i in range(len(ax)):
    ax[i].scatter(X_train[:,i],y_train)
    ax[i].set_xlabel(X_features[i])
ax[0].set_ylabel("Price (1000's)")
plt.show()

在这里插入图片描述
对每个特征与目标变量(价格)进行绘图可以提供一些关于哪些特征对价格有最强影响的线索。如上所述,增加房屋面积也会增加价格。而卧室数和楼层数似乎对价格影响不大。新房比旧房价格更高。

2、学习率

设置不同的学习率进行梯度下降,观察一下的结果

2.1 α \alpha α = 9.9e-7

#set alpha to 9.9e-7
_, _, hist = run_gradient_descent(X_train, y_train, 10, alpha = 9.9e-7)

运行过程:
在这里插入图片描述

看起来学习率太高了。解决方案没有收敛。损失在增加而不是减少,绘制结果可视化:

plot_cost_i_w(X_train, y_train, hist)

在这里插入图片描述
右侧的图显示了参数 w 0 w_0 w0 的值。在每次迭代中,它超过了最优值,结果导致成本增加而不是接近最小值。需要注意的是,这不是一个完全准确的图,因为每次迭代时有4个参数被修改,而不仅仅是一个。该图仅显示了 w 0 w_0 w0 的值,其他参数被设定为一些良好的值。在这个图和后面的图中,可能会注意到蓝线和橙线略有偏差。

2.2 α \alpha α = 9e-7

#set alpha to 9e-7
_,_,hist = run_gradient_descent(X_train, y_train, 10, alpha = 9e-7)

在这里插入图片描述

损失在整个运行过程中都在减少,这表明学习率 α \alpha α 不是太大。

plot_cost_i_w(X_train, y_train, hist)

在这里插入图片描述
在左图中,可以看到损失在逐渐减少,这是预期的结果。在右图中,可以看到 w 0 w_0 w0 仍然在最小值周围振荡,但每次迭代它都在减小,而不是增加。dj_dw[0] 在每次迭代中改变符号,因为 w[0] 跳过了最优值。

2.3 α \alpha α = 1e-7

#set alpha to 1e-7
_,_,hist = run_gradient_descent(X_train, y_train, 10, alpha = 1e-7)

在这里插入图片描述

plot_cost_i_w(X_train,y_train,hist)

在这里插入图片描述
在左图中,可以看到损失在逐渐减少,这是预期的结果。在右图中,可以看到 w 0 w_0 w0 在没有越过最小值的情况下逐渐减小。dj_w0 在整个运行过程中都是负数。尽管可能不如前面的例子那么快,但是这个解也会收敛。

3、特征缩放

3.1 特征缩放的原因

让我们再看看 α \alpha α = 9e-7的情况。这非常接近可以设置 α \alpha α到不发散的最大值。这是前几次迭代的简短运行:
在这里插入图片描述
如上所示,虽然损失正在降低,但很明显由于 w 0 w_0 w0的梯度更大,因此比其他参数取得更快的进展。

下图显示了 α \alpha α = 9e-7非常长时间的运行结果。这花费几个小时。
在这里插入图片描述
从上图中可以看到,损失在最初降低后缓慢下降。注意w0w0,w1,w2 以及 dj_dw0dj_dw1-3 之间的区别。w0 很快达到了接近最终值的状态, dj_dw0 快速减小到一个很小的值来显示w0接近最终值,而其他参数更缓慢地减小。

为什么会是这样? 有什么办法可以改进它?
在这里插入图片描述
上图说明了 w w w更新不均匀的原因。

  • α \alpha α 由所有的参数更新共享.
  • 公共误差项被乘以特征值来更新 w w w,而不是偏置项 b b b.
  • 特征值的大小变化幅度差异很大,导致一些特征的更新速度比其他特征快得多。在这个例子中, w 0 w_0 w0 乘以 ‘size(sqft)’,该特征通常大于 1000,而 w 1 w_1 w1 乘以 ‘number of bedrooms’,该特征通常在 2-4 范围内。

所以,解决方案就是特征缩放

在课程中介绍了三种不同的技术:

  • 特征缩放,本质上是将每个特征除以用户选择的值,使得特征值的范围在 -1 到 1 之间。
  • 均值归一化: x i : = x i − μ i m a x − m i n x_i := \dfrac{x_i - \mu_i}{max - min} xi:=maxminxiμi
  • Z-score 归一化.

3.2 Z-score 归一化

Z-score 归一化后,所有特征的均值为 0,标准差为 1.

为实现 Z-score 归一化, 根据以下公式调整输入值:
x j ( i ) = x j ( i ) − μ j σ j (4) x^{(i)}_j = \dfrac{x^{(i)}_j - \mu_j}{\sigma_j} \tag{4} xj(i)=σjxj(i)μj(4)
其中, j j j 选择一个特征或矩阵 X 中的一列。 µ j µ_j µj 是特征(j)所有值的平均值, σ j \sigma_j σj 是特征(j)的标准差。
μ j = 1 m ∑ i = 0 m − 1 x j ( i ) σ j 2 = 1 m ∑ i = 0 m − 1 ( x j ( i ) − μ j ) 2 \begin{align} \mu_j &= \frac{1}{m} \sum_{i=0}^{m-1} x^{(i)}_j \tag{5}\\ \sigma^2_j &= \frac{1}{m} \sum_{i=0}^{m-1} (x^{(i)}_j - \mu_j)^2 \tag{6} \end{align} μjσj2=m1i=0m1xj(i)=m1i=0m1(xj(i)μj)2(5)(6)

这里需要注意:对特征进行归一化时,存储用于归一化的值(用于计算的平均值和标准差)非常重要。从模型中学习参数后,我们经常想要预测我们以前没有见过的房屋的价格。给定一个新的 x 值(客厅面积和卧室数量),我们必须首先使用我们之前根据训练集计算的平均值和标准差对 x 进行标准化。

以下是实现过程:

def zscore_normalize_features(X):
    """
    computes  X, zcore normalized by column
    
    Args:
      X (ndarray): Shape (m,n) input data, m examples, n features
      
    Returns:
      X_norm (ndarray): Shape (m,n)  input normalized by column
      mu (ndarray):     Shape (n,)   mean of each feature
      sigma (ndarray):  Shape (n,)   standard deviation of each feature
    """
    # find the mean of each column/feature
    mu     = np.mean(X, axis=0)                 # mu will have shape (n,)
    # find the standard deviation of each column/feature
    sigma  = np.std(X, axis=0)                  # sigma will have shape (n,)
    # element-wise, subtract mu for that column from each example, divide by std for that column
    X_norm = (X - mu) / sigma      

    return (X_norm, mu, sigma)
 
#check our work
#from sklearn.preprocessing import scale
#scale(X_orig, axis=0, with_mean=True, with_std=True, copy=True)

可以看一下 Z-score 归一化逐步的转变过程:

mu     = np.mean(X_train,axis=0)   
sigma  = np.std(X_train,axis=0) 
X_mean = (X_train - mu)
X_norm = (X_train - mu)/sigma      

fig,ax=plt.subplots(1, 3, figsize=(12, 3))
ax[0].scatter(X_train[:,0], X_train[:,3])
ax[0].set_xlabel(X_features[0]); ax[0].set_ylabel(X_features[3]);
ax[0].set_title("unnormalized")
ax[0].axis('equal')

ax[1].scatter(X_mean[:,0], X_mean[:,3])
ax[1].set_xlabel(X_features[0]); ax[0].set_ylabel(X_features[3]);
ax[1].set_title(r"X - $\mu$")
ax[1].axis('equal')

ax[2].scatter(X_norm[:,0], X_norm[:,3])
ax[2].set_xlabel(X_features[0]); ax[0].set_ylabel(X_features[3]);
ax[2].set_title(r"Z-score normalized")
ax[2].axis('equal')
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
fig.suptitle("distribution of features before, during, after normalization")
plt.show()

在这里插入图片描述
上图显示了两个训练集参数“年龄”和“平方英尺”之间的关系。这些都是以相同比例绘制的。

左:未标准化:“尺寸(平方英尺)”特征的值范围或方差远大于年龄的范围。
中:第一步查找从每个特征中减去平均值。这留下了以零为中心的特征。很难看出“年龄”特征的差异,但“尺寸(平方英尺)”显然在零左右。
右:第二步除以方差。这使得两个特征都以零为中心,具有相似的尺度。

接下来,对数据进行标准化并将其与原始数据进行比较。

# normalize the original features
X_norm, X_mu, X_sigma = zscore_normalize_features(X_train)
print(f"X_mu = {X_mu}, \nX_sigma = {X_sigma}")
print(f"Peak to Peak range by column in Raw        X:{np.ptp(X_train,axis=0)}")   
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X_norm,axis=0)}")

在这里插入图片描述

通过归一化,每列的峰值范围从数千倍减少到 2-3 倍。

fig,ax=plt.subplots(1, 4, figsize=(12, 3))
for i in range(len(ax)):
    norm_plot(ax[i],X_train[:,i],)
    ax[i].set_xlabel(X_features[i])
ax[0].set_ylabel("count");
fig.suptitle("distribution of features before normalization") 
plt.show()
fig,ax=plt.subplots(1,4,figsize=(12,3))
for i in range(len(ax)):
    norm_plot(ax[i],X_norm[:,i],)
    ax[i].set_xlabel(X_features[i])
ax[0].set_ylabel("count"); 
fig.suptitle(f"distribution of features after normalization")

plt.show()

在这里插入图片描述
在这里插入图片描述
接下来,使用归一化的数据重新运行梯度下降算法。

w_norm, b_norm, hist = run_gradient_descent(X_norm, y_train, 1000, 1.0e-1, )

在这里插入图片描述
缩放后的特征可以更快地获得非常准确的结果!请注意,在这个相当短的运行结束时,每个参数的梯度都很小。0.1 的学习率是使用归一化特征进行回归的良好开端。接下来绘制预测值与目标值的关系图。请注意,预测是使用归一化特征进行的,而绘图是使用原始特征值显示的。

#predict target using normalized features
m = X_norm.shape[0]
yp = np.zeros(m)
for i in range(m):
    yp[i] = np.dot(X_norm[i], w_norm) + b_norm

    # plot predictions and targets versus original features    
fig,ax=plt.subplots(1,4,figsize=(12, 3),sharey=True)
for i in range(len(ax)):
    ax[i].scatter(X_train[:,i],y_train, label = 'target')
    ax[i].set_xlabel(X_features[i])
    ax[i].scatter(X_train[:,i],yp,color=dlorange, label = 'predict')
ax[0].set_ylabel("Price"); ax[0].legend();
fig.suptitle("target versus prediction using z-score normalized model")
plt.show()

在这里插入图片描述

3.3 预测

生成模型的目的是用它来预测数据集中没有的房价。我们来预测一套 1200 平方英尺、3 间卧室、1 层、40 年楼龄的房子的价格。必须使用训练数据标准化时得出的平均值和标准差来标准化数据。

# First, normalize out example.
x_house = np.array([1200, 3, 1, 40])
x_house_norm = (x_house - X_mu) / X_sigma
print(x_house_norm)
x_house_predict = np.dot(x_house_norm, w_norm) + b_norm
print(f" predicted price of a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old = ${x_house_predict*1000:0.0f}")

在这里插入图片描述

3.4 损失等值线

查看特征缩放的另一种方法是根据损失等值线。当特征尺度不匹配时,等值线图中损失与参数的关系图是不对称的。在下图中,参数的比例是匹配的。左图是 w[0](平方英尺)与 w[1](标准化特征之前的卧室数量)的损失等值线图。该图非常不对称,以至于看不到完整轮廓的曲线。相反,当特征标准化时,损失轮廓更加对称。结果是,在梯度下降期间更新参数可以使每个参数取得相同的进展。
在这里插入图片描述

plt_equal_scale(X_train, X_norm, y_train)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/54445.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

为Win12做准备?微软Win11 23H2将集成AI助手:GPT4免费用

微软日前确认今年4季度推出Win11 23H2,这是Win11第二个年度更新。 Win11 23H2具体有哪些功能升级,现在还不好说,但它会集成微软的Copilot,它很容易让人想到多年前的“曲别针”助手,但这次是AI技术加持的,Co…

在k8s集群内搭建Prometheus监控平台

基本架构 Prometheus由SoundCloud发布,是一套由go语言开发的开源的监控&报警&时间序列数据库的组合。 Prometheus的基本原理是通过HTTP协议周期性抓取被监控组件的状态,任意组件只要提供对应的HTTP接口就可以接入监控。不需要任何SDK或者其他的…

Linux上定位线上CPU飙高

【模拟场景】 写一个java main函数,死循环打印 System.out.println(“111111”) , 将其打成jar包放在linux中执行 1、通过TOP命令找到CPU耗用最厉害的那个进程的PID 2、top -H -p 进程PID 找到进程下的所有线程 可以看到 pid 为 94384的线程耗用cpu …

UM2080F32——32位SoC芯片

UM2080F32是基于ARM Cortex-M0内核的超低功耗、高性能的、单片集成(G)FSK/OOK无线收发机的32位SoC芯片。工作于200MHz~960MHz范围内,支持灵活可设的数据包格式,支持自动应答和自动重发功能,支持跳频操作,支持FEC功能,同…

BugKu CTF(杂项篇MISC)—社工-进阶收集

BugKu CTF(杂项篇MISC)—社工-进阶收集 提 示: flag{小美小区名字拼音} 描 述: 小明当年为了追求小美想尽办法获得小美的地址。直到有一天小美发了一条说说,小明觉得希望来了。(实战改编题,难度降低了。) [外链图片转存失败,源站可能有防盗链机制,建议…

yolov3-tiny原理解析及代码分析

前言 从去年十一月份开始学习yolo神经网络用于目标识别的硬件实现,到现在已经六个月了。一个硬件工程师,C/C基础都差劲的很,对照着darknet作者的源码和网上东拼西凑的原理讲解,一点一点地摸索。刚开始进度很慢,每天都…

pytorch学习——模型选择

一.概念 模型选择是机器学习中的重要环节,它涉及到从各种统计,机器学习或深度学习模型中选取最佳模型的过程。这涉及到许多关键概念,包括偏差与方差,过拟合与欠拟合,训练误差和泛化误差,交叉验证&#xff0…

【计算机网络】传输层协议 -- TCP协议

文章目录 1. TCP协议的引入2. TCP协议的特点3. TCP协议格式3.1 序号与确认序号3.2 发送缓冲区与接收缓冲区3.3 窗口大小3.4 六个标志位 4. 确认应答机制5. 超时重传机制6. 连接管理机制6.1 三次握手6.2 四次挥手 7. 流量控制8. 滑动窗口9. 拥塞控制10. 延迟应答11. 捎带应答12.…

Inkscape 1.3 版开放源代码 SVG 编辑器发布,新增形状生成器工具和许多更改

导读Inkscape 是功能强大的开源、跨平台、免费 SVG(可缩放矢量图形)编辑器,今天已更新到稳定的 1.3 版,这是一个引入新功能和许多改进的重要版本。 Inkscape 1.3 是在 Inkscape 1.2 发布一年零两个月后推出的,它引入了…

python-网络爬虫.regular

regular 正则表达式 (regular expression) 正则表达式(regular expression)描述了一种字符串匹配的模式 (pattern), 可以用来检查一个串是否含有某种子串、将匹配的子串替换或者从某个串 中取出符合某个条件的子串等。 正则表达式是由普通…

学C的第三十一天【通讯录的实现】

相关代码gitee自取:C语言学习日记: 加油努力 (gitee.com) 接上期: 学C的第三十天【自定义类型:结构体、枚举、联合】_高高的胖子的博客-CSDN博客 通讯录需求: 实现一个通讯录, 通讯录中存放保存人的信息&#xff1…

SpringBoot中MongoDB的使用

SpringBoot中MongoDB的使用 MongoDB 是最早热门非关系数据库的之一,使用也比较普遍,一般会用做离线数据分析来使用,放到内网的居 多。由于很多公司使用了云服务,服务器默认都开放了外网地址,导致前一阵子大批 MongoD…

P1535 [USACO08MAR] Cow Travelling S(dfs+剪枝 or 记忆化搜索)

1:本题暴力做法简单,重点在于我们如何剪枝: :《曼哈顿距离》我们每走一个点就判断,当前点到终点的最短步数是不是小于当前剩余的步数, 如果大于就肯定不符合直接return,或者当步数为0时,当还没到达终点,那…

springSecurity自定义过滤器不生效问题排查

在使用springSecurity过滤器的过程中,由于需要自定义一个过滤器处理数据问题。代码如下: 过滤器定义: public class AuthRequestParamFiler extends GenericFilterBean {private static final CoreLogger LOGGER CoreLoggerFactory.getLog…

Flink - souce算子

水善利万物而不争,处众人之所恶,故几于道💦 目录 1. 从Java的集合中读取数据 2. 从本地文件中读取数据 3. 从HDFS中读取数据 4. 从Socket中读取数据 5. 从Kafka中读取数据 6. 自定义Source 官方文档 - Flink1.13 1. 从Java的集合中读取数据 …

【python】使用Selenium和Chrome WebDriver来获取 【腾讯云 Cloud Studio 实战训练营】中的文章信息

文章目录 前言导入依赖库设置ChromeDriver的路径创建Chrome WebDriver对象打开网页找到结果元素创建一个空列表用于存储数据遍历结果元素并提取数据提取标题、作者、发布时间等信息判断是否为目标文章提取目标文章的描述、阅读数量、点赞数量、评论数量等信息将提取的数据存储为…

【外卖系统】菜品信息分页查询

需求分析 当菜品数据很多时,用分页的形式来展示列表数据 代码开发 页面发送ajax请求,将分页查询参数提交到服务端,获取分页数据页面发送请求,请求服务端进行图片下载,用于页面图片展示 构造分页 注意:…

Java入门指南:Java语言优势及其特点

目录 1. Java语言简介及发展概述 2. Java语言的优势 2.1 可移植性 2.2 面向对象 2.3 安全性 2.4 大量类库 3. Java语言与C/C的区别 4. 初识Java程序入口之main方法 5. 注释、标识符、关键字 5.1 注释 5.2 标识符 5.3 关键字 1. Java语言简介及发展概述 Java是一种面…

iphone备份用什么软件?好用的苹果数据备份工具推荐!

众所周知,如果要将iPhone的数据跟电脑进行传输备份的话,我们需要用到iTunes这个pc工具。但是对于iTunes,不少人都反映这个软件比较难用,用不习惯。于是,顺应时代命运的iPhone备份同步工具就出现了。那iphone备份用什么…

[css]margin-top不起作用问题(外边距合并)

在初学css时&#xff0c;会遇到突然间margin-top不起作用的情况。如下面&#xff1a; 情况一&#xff1a; 代码&#xff1a; <html> <head><style type"text/css"> * {margin:0;padding:0;border:0; }#outer {width:300px;height:300px;backgroun…