LLM-大模型演化分支树、GPT派发展阶段及训练流程图、Infini-Transformer说明

大模型是怎么演进的?

  • Encoder Only: 对应粉色分支,即BERT派,典型模型: BERT
    • 自编码模型(Autoencoder Model):通过重建句子来进行预训练,通常用于理解任务,如文本分类和阅读理解
    • 模型像一个善于分析故事的专家,输入一段文本,能拆解的头头是道,本质上是把高维数据压缩到低维空间,
  • Decoder Only: 对应蓝色分支,GPT派, 典型模型: GPT4, LLaMA
    • 自回归模型(Autoregressive Model):通过预测序列中的下一个词来进行预训练,通常用于文本生成任务
    • 模型像一个会讲故事的专家,给点提示,就能流畅的接着自说自话
  • Encoder-Decoder: 对应绿色分支,T5派, 典型模型: T5, ChatGLM
    • 序列到序列模型(Sequence to Sequence Model):结合了编码器和解码器,通常用于机器翻译和文本摘要等任务
    • 模型像一个“完型填空专家”,是因为它特别擅长处理这种类型的任务。通过将各种NLP任务统一转换为填空问题,T5派能够利用其强大的语言理解和生成能力来预测缺失的文本。这种方法简化了不同任务之间的差异,使得同一个模型可以灵活地应用于多种不同的NLP任务,并且通常能够在多个任务上取得很好的性能
      在这里插入图片描述

GPT派发展阶段

  • GOOGLE 的Gopher验证了通过扩大模型规模,有效处理复杂任务的可行性
  • Chinchilla模型 验证了增加数据比增加模型参数更有效
  • LLaMA模型:用不到1/10的参数,实现了堪比GPT系列模型的性能,成为当下最流行的开源大模型
    在这里插入图片描述

大模型训练流程图

  • 第一步 预训练是鸿沟,算力占全部的99%以上,【LLaMA 模型开源后,为众多以LLaMA 为基础模型的其它模型节约的成本】
  • 数据集: LLaMA 2采用互联网公开数据集,经2万亿token, 每个单词约1.3个token,相当于1.5万亿个单词,约55亿页书,
  • 算法:LLaMA 及其子孙模型在传统的解码器架构上,进行了多个改进,
    • 输入数据使用了均方层规一化函数 RMSNorm,大大提升了训练的稳定性
      在这里插入图片描述
    • 激活函数用swiGLU替换了ReLU,提升了非线性的表征能力
    • 不再使用位置嵌入,而是在网络每层增加了旋转嵌入RoPE,速度更快,效果更好
  • 奖励建模和强化学习都是基于人类反馈强化学习RLHF【Reinforcement Learning from Human Feedback】
    • 先训一个二元分类器,给出奖励,判断人类的偏好,
    • 然后再训一个强大学习算法,最大化奖励,并据此进一步微调模型,
  • SFT Model【Supervised Fine-Tuning Model】

在这里插入图片描述

Infini-Transformer架构

4月10日,为解决大模型(LLMs)在处理超长输入序列时遇到的内存限制问题, Google发布下一代Transformer模型Infini-Transformer
详见论文:Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

在这里插入图片描述
Infini-Transformer是一种为了扩展基于Transformer的大型语言模型(LLMs)以处理无限长输入而设计的高效方法。其核心技术是Infini-attention,这是一种新的注意力机制,它通过将压缩记忆(compressive memory)整合到传统的注意力机制中,从而实现了对长序列数据的有效处理。

Infini-Attention机制

Infini-attention机制包含以下几个关键组件:

  1. 局部注意力(Local Attention):在每个输入段(segment)内,Infini-Transformer计算标准的因果点积注意力(causal dot-product attention)。这种局部注意力确保了在处理每个段时,模型仅关注当前段内的token。
  2. 压缩记忆(Compressive Memory):Infini-attention通过重用点积注意力计算中的关键(key)、值(value)和查询(query)状态,将它们存储在压缩记忆中。这种记忆允许模型在处理后续序列时,通过查询状态从记忆中检索值,从而保持对之前上下文的长期记忆。
  3. 长期线性注意力(Long-term Linear Attention):Infini-attention引入了一种线性注意力机制,它使用关联矩阵(associative matrix)来存储和检索信息。这种机制使得模型能够在保持固定数量参数的同时,处理任意长度的序列。

长期上下文建模

Infini-Transformer通过以下步骤实现长期上下文建模:

  1. 记忆检索(Memory Retrieval):在处理新的输入段时,Infini-attention使用当前的查询状态从压缩记忆中检索与之前上下文相关的信息。
  2. 记忆更新(Memory Update):随着新信息的加入,压缩记忆会被更新以反映最新的上下文信息。这个过程涉及到将新的键值对与记忆矩阵相结合,同时保持记忆的压缩性质。
  3. 上下文注入(Context Injection):Infini-attention通过学习门控标量(gating scalar)β来平衡局部注意力状态和从记忆中检索到的内容,将它们融合到最终的上下文表示中。

实验结果

在长上下文语言建模、1M长度的密钥上下文块检索和500K长度的书籍摘要任务中,Infini-Transformer展示了其有效性。实验结果表明,Infini-Transformer在长上下文任务上的性能超过了基线模型,并且在内存大小方面实现了114倍的压缩比。

总结

Infini-Transformer通过引入Infini-attention机制,使得Transformer LLMs能够有效地处理无限长的输入序列,同时保持有界的内存占用和计算资源。这种方法通过在单个Transformer块中结合局部注意力和长期线性注意力机制,实现了对长距离依赖关系的高效建模。Infini-Transformer的提出,为长序列数据的处理提供了一种新的解决方案,具有重要的理论和实践意义。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/544069.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

架构师系列-搜索引擎ElasticSearch(五)- 索引设计

索引创建后,要非常谨慎,创建不好后面会出现各种问题。 索引设计的重要性 索引创建后,索引分片只能通过_split和_shrink 接口对其进行成倍的增加和缩减。 ES的数据是通过_routing分配到各个分片上的,所以本质上不推荐区改变索引的…

记录一下MySQL8版本更改密码规则

#查看当前密码策略 show variables like validate_password%;#修改密码等级为low set global validate_password.policy LOW; #注意MySQL8版本这是点,不是_#修改密码长度为6 set global validate_password.length 6;#查询我的数据库中user表host和user select host,…

【前端面试3+1】16 TCP与UDP的区别、如何清除浮动、哪些原因造成阻塞页面渲染、【相同的树】

一、TCP与UDP的区别 TCP(Transmission Control Protocol)和UDP(User Datagram Protocol)是两种常用的网络传输协议,它们有以下几点区别: 1、连接性: TCP是面向连接的协议,通信双方在…

以太网数据量大小字符串生成方法(可变单位)

0 前言 当我们想显示以太网数据量大小时,往往有个头疼的单位需要处理,单位取小了不一目了然,单位取大了精度太低。本例设计一个函数,将根据以太网数据量大小自动生成单位可变的字符串(KB、MB、GB、TB、PB)…

【大语言模型】基础:TF-IDF

TF-IDF (Term Frequency-Inverse Document Frequency) 是一种用于信息检索与文本挖掘的统计方法,用来评估一个词对于一个文件集或一个语料库中的其中一份文件的重要性。它是一种常用于文本处理和自然语言处理的权重计算技术。 原理 TF-IDF 由两部分组成&#xff1…

Qt:发出一个信号,有多少相关槽函数执行?

返回连接signal的接收者的个数。 因为信号和槽都能作为信号的接收者,同时相同的连接能被建立很多次,接收者的数量和与该信号建立连接的数量相同。 当调用该函数时,你能使用SIGNAL()宏来传递一个特定的信号: if (receivers(SIGNA…

【core analyzer】core analyzer的介绍和安装详情

目录 🌞1. core和core analyzer的基本概念 🌼1.1 coredump文件 🌼1.2 core analyzer 🌞2. core analyzer的安装详细过程 🌼2.1 方式一 简单但不推荐 🌼2.2 方式二 推荐 🌻2.2.1 安装遇到…

Servlet实现常用功能及其他方法

getParameter 获取body或url中指定的key/value值 String classIdreq.getParameter("classId"); getQueryString 获取请求的所有查询参数key,values1 String queryStringreq.getQueryString(); from表单提交 前端通过from表单提交用户名和密码 <!DOCTYPE htm…

<计算机网络自顶向下> P2P应用

纯P2P架构 没有或者极少一直运行的Server&#xff0c;Peer节点间歇上网&#xff0c;每次IP地址都可能变化任意端系统都可以直接通信利用peer的服务能力&#xff0c;可扩展性好例子&#xff1a;文件分发; 流媒体; VoIP类别:两个节点相互上载下载文件&#xff0c;互通有无&#…

Android Gradle 开发与应用 (七) : 实现打包自动复制文件插件

1. 前言 项目中遇到了一个问题 : 其中一个模块MyLibrary的assets文件夹中,需要存放很多文件(每个文件对应一个功能)。 这样导致的问题是MyLibrary打出的这个aar包体积特别大。 如果把MyLibrary严谨地拆解成若干个Module又比较费时,对于现在业务现状来说也显得没那么必要。…

Matlab隐式方程拟合【案例源码+视频教程】|隐函数拟合|非线性拟合|视频教程

专栏导读 作者简介&#xff1a;工学博士&#xff0c;高级工程师&#xff0c;专注于工业软件算法研究本文已收录于专栏&#xff1a;《复杂函数拟合案例分享》本专栏旨在提供 1.以案例的形式讲解各类复杂函数拟合的程序实现方法&#xff0c;并提供所有案例完整源码&#xff1b;2.…

day10 | 栈与队列 part-2 (Go) | 20 有效的括号、1047 删除字符串中的所有相邻重复项、150 逆波兰表达式求值

今日任务 20 有效的括号 (题目: . - 力扣&#xff08;LeetCode&#xff09;)1047 删除字符串中的所有相邻重复项 (题目: . - 力扣&#xff08;LeetCode&#xff09;)150 逆波兰表达式求值 (题目: . - 力扣&#xff08;LeetCode&#xff09;) 20 有效的括号 题目: . - 力扣&…

机器学习第34周周报VBAED

文章目录 week34 VBAED摘要Abstract一、文献阅读1. 题目2. abstract3. 网络架构3.1 序列问题阐述3.2 变分模态分解3.3 具有 BiLSTM 和双向输入注意力的编码器3.4 具有 BiLSTM 和双向时间注意力的解码器 4. 文献解读4.1 Introduction4.2 创新点4.3 实验过程4.3.1 数据集数据预处…

AI大模型之idea通义灵码智能AI插件安装方式

问题描述 主要讲述如何进行开发工具 idea中如何进行通义灵码的插件的安装解决方案 直接在idea的plugin市场中安装 下载插件之后进行安装 见资源

【QT+QGIS跨平台编译】161:【qgispython跨平台编译】—【qgis_python.h生成】

点击查看专栏目录 文章目录 一、qgis_python.h介绍二、信息分析三、qgis_python.h生成一、qgis_python.h介绍 qgis_python.h 是 QGIS(Quantum Geographic Information System)GIS 软件的一个头文件。QGIS 是一个开源的地理信息系统软件,提供了丰富的地图制图和空间分析功能。…

Google最新论文: 复杂的 Prompt 如何更好的调试?

本文介绍了Sequence Salience&#xff0c;这是一个专为调试复杂的大模型提示而设计的系统。该系统利用广泛使用的显著性方法&#xff0c;支持文本分类和单标记预测&#xff0c;并将其扩展到可处理长文本的调试系统。现有的工具往往不足以处理长文本或复杂提示的调试需求。尽管存…

ASP.NET公交车管理系统的实现与设计

摘 要 随着经济的日益增长&#xff0c;信息化时代已经到来&#xff0c;生活中各种信息趋向数字化、清晰化。公交车作为现代城市生活中一种重要的交通工具&#xff0c;其数量增多&#xff0c;车型也不再单一&#xff0c;雇用的司机增多&#xff0c;这样使得公交车公司的车辆信…

架构师系列-搜索引擎ElasticSearch(四)- 高级查询

ES查询 matchAll 脚本方式 该方式可以通过kabana、curl、elasticsearch-head&#xff08;纯前端&#xff09;去操作 # 默认情况下&#xff0c;es一次展示10条数据,通过from和size来控制分页 # 查询结果详解 GET goods/_search {"query": {"match_all":…

计算机网络 实验指导 实验17

实验17 配置无线网络实验 1.实验拓扑图 Table PC0 和 Table PC1 最开始可能还会连Access Point0&#xff0c;无影响后面会改 名称接口IP地址网关地址Router0fa0/0210.10.10.1fa0/1220.10.10.2Tablet PC0210.10.10.11Tablet PC1210.10.10.12Wireless互联网220.10.10.2LAN192.16…

JavaScript(六)-高级篇

文章目录 作用域局部作用域全局作用域作用域链JS垃圾回收机制闭包变量提升 函数进阶函数提升函数参数动态参数多余参数 箭头函数 解构赋值数组解构对象解构 遍历数组forEach方法&#xff08;重点&#xff09;构造函数深入对象创建对象的三种方式构造函数实例成员 & 静态成员…