RTC的基本概念以及相关例程

实时时钟(RTC)

北京时间跟伦敦时间错8个小时

BKP简介

BKP本质上是RAM存储器,没有掉电不丢失的能力。

VBAT的作用就是,当VDD断电时,BKP会切换到VBAT供电,这样可以继续维持BKP里面的数据,如果VDD断电,VBAT也没电,那BKP里面的数据就会清零。

 BKP基本结构

BKP处于后备区域,但后备区域不只有BKP,还有RTC的相关电路。

BKP主要有数据寄存器、控制寄存器、状态寄存器、RTC时钟校准寄存器

数据寄存器:用来存储数据,每个数据寄存器都是16位的。STM32F103C8T6型号的BKP数据寄存器可以存储20字节。

RTC简介

DS1302是外置的RTC芯片,这个芯片可以独立计时。

RTC框图

灰色区域,这些电路在主电源掉电后,可以使用备用电池维持工作。

以RTCCLK进来。需要首先经过RTC预分频器进行分频

这个分频器由两个寄存器组成:上面这个是重装载寄存器RTC_PRL 、下面这个,RTC_DV,手册里叫作余数奇存器,但实际上,它还是计数器的作用。

PRL是计数目标,我们写入6,那就是7分频,因为计数值包括了0,所以重装值写入几,就是几+1分频。下面这个DIV,就是没来一个时钟计一个数的用途。这个DIV是一个自减计数器,每来一个输入时钟,DIV的值就自减一次,自减到0时,再来一个输入时钟,DIV输出一个脉冲,产生溢出信号。同时DIV从PRL获取重装值,回到重装值继续自减。

32位寄存器RTC_CNT,就是计时最核心的部分

RTC还设计的有一个闹钟寄存器RTC_ALR,也是32位寄存器。它的作用就是设置闹钟,我们可以在ALR写一个秒数,当CNT的值跟ALR设定的闹钟值一样时,这时就会产生RTC_Alarm闹钟信号,通往右边的中断系统,在中断函数里,你可以执行相应的操作。同时,这个闹钟还兼有一个功能,闹钟信号可以让STM32退出待机模式。

右边是中断部分,左边是触发中断的3个信号。

1.RTC_Second,秒中断:它的来源,就是CNT的输入时钟,如果开启这个中断。那么程序就会每秒进一次RTC中断。

2.RTC_Overflow--溢出中断:它的来源,是CNT的右边,意思就是CNT的32位计数器计满溢出了。

3.闹钟中断:当CNT的值跟ALR设定的闹钟值一样时,这时就会产生RTC_Alarm闹钟信号,通往右边的中断系统,在中断函数里,你可以执行相应的操作。同时,这个闹钟还兼有一个功能,闹钟信号可以让STM32退出待机模式。

通过或门进入NVIC中断

读写寄存器,可以通过APB1总线来完成,另外也可以看出,RTC是APB1总线上的设备。

RTC有三种时钟来源: 

HSE时钟除以128(通常为8MHz/128)
LSE振荡器时钟(通常为32.768KHz)
LSI振荡器时钟(40KHz)
将时钟源接入RTCCLK
最常用的外部32.768KHz的晶振,提供RTCCLK的时钟
HSE主要作为系统主时钟、LSI主要作为看门狗时钟 -------他们只是顺带可以备选当作RTC的时钟

RTC基本结构

RTCCLK的时钟来源,这一块需要在RCC里配置,3个时钟选择一个,当作RTCCLK

之后,RTCCLK先通过预分频器,对时钟进行分频。

余数寄存器是一个自减计数器,存储当前的计数值;重装寄存器是计数目标,决定分频值,分频之后,得到1Hz的计数信号,一秒自增一次。下面还有一个32位的闹钟值,可以设置闹钟,如果不需要的话,这块可以不用管。

3个触发中断的信号

RTC操作注意事项

 示例1读写BKP:硬件接线图

 示例1读写BKP:软件实现

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Key.h"

uint8_t KeyNum;					//定义用于接收按键键码的变量

uint16_t ArrayWrite[] = {0x1234, 0x5678};	//定义要写入数据的测试数组
uint16_t ArrayRead[2];						//定义要读取数据的测试数组

int main(void)
{
	/*模块初始化*/
	OLED_Init();				//OLED初始化
	Key_Init();					//按键初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "W:");
	OLED_ShowString(2, 1, "R:");
	
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);		//开启PWR的时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);		//开启BKP的时钟
	
	/*备份寄存器访问使能*/
	PWR_BackupAccessCmd(ENABLE);							//使用PWR开启对备份寄存器的访问
	
	while (1)
	{
		KeyNum = Key_GetNum();		//获取按键键码
		
		if (KeyNum == 1)			//按键1按下
		{
			ArrayWrite[0] ++;		//测试数据自增
			ArrayWrite[1] ++;
			
			BKP_WriteBackupRegister(BKP_DR1, ArrayWrite[0]);	//写入测试数据到备份寄存器
			BKP_WriteBackupRegister(BKP_DR2, ArrayWrite[1]);
			
			OLED_ShowHexNum(1, 3, ArrayWrite[0], 4);		//显示写入的测试数据
			OLED_ShowHexNum(1, 8, ArrayWrite[1], 4);
		}
		
		ArrayRead[0] = BKP_ReadBackupRegister(BKP_DR1);		//读取备份寄存器的数据
		ArrayRead[1] = BKP_ReadBackupRegister(BKP_DR2);
		
		OLED_ShowHexNum(2, 3, ArrayRead[0], 4);				//显示读取的备份寄存器数据
		OLED_ShowHexNum(2, 8, ArrayRead[1], 4);
	}
}

 示例2RTC:硬件接线图 

 示例2RTC:软件实现

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyRTC.h"

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	MyRTC_Init();		//RTC初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "Date:XXXX-XX-XX");
	OLED_ShowString(2, 1, "Time:XX:XX:XX");
	OLED_ShowString(3, 1, "CNT :");
	OLED_ShowString(4, 1, "DIV :");
	
	while (1)
	{
		MyRTC_ReadTime();							//RTC读取时间,最新的时间存储到MyRTC_Time数组中
		
		OLED_ShowNum(1, 6, MyRTC_Time[0], 4);		//显示MyRTC_Time数组中的时间值,年
		OLED_ShowNum(1, 11, MyRTC_Time[1], 2);		//月
		OLED_ShowNum(1, 14, MyRTC_Time[2], 2);		//日
		OLED_ShowNum(2, 6, MyRTC_Time[3], 2);		//时
		OLED_ShowNum(2, 9, MyRTC_Time[4], 2);		//分
		OLED_ShowNum(2, 12, MyRTC_Time[5], 2);		//秒
		
		OLED_ShowNum(3, 6, RTC_GetCounter(), 10);	//显示32位的秒计数器
		OLED_ShowNum(4, 6, RTC_GetDivider(), 10);	//显示余数寄存器
	}
}
#include "stm32f10x.h"                  // Device header
#include <time.h>

uint16_t MyRTC_Time[] = {2023, 1, 1, 23, 59, 55};	//定义全局的时间数组,数组内容分别为年、月、日、时、分、秒

void MyRTC_SetTime(void);				//函数声明

/**
  * 函    数:RTC初始化
  * 参    数:无
  * 返 回 值:无
  */
void MyRTC_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);		//开启PWR的时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);		//开启BKP的时钟
	
	/*备份寄存器访问使能*/
	PWR_BackupAccessCmd(ENABLE);							//使用PWR开启对备份寄存器的访问
	
	if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5)			//通过写入备份寄存器的标志位,判断RTC是否是第一次配置
															//if成立则执行第一次的RTC配置
	{
		RCC_LSEConfig(RCC_LSE_ON);							//开启LSE时钟
		while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);	//等待LSE准备就绪
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);				//选择RTCCLK来源为LSE
		RCC_RTCCLKCmd(ENABLE);								//RTCCLK使能
		
		RTC_WaitForSynchro();								//等待同步
		RTC_WaitForLastTask();								//等待上一次操作完成
		
		RTC_SetPrescaler(32768 - 1);						//设置RTC预分频器,预分频后的计数频率为1Hz
		RTC_WaitForLastTask();								//等待上一次操作完成
		
		MyRTC_SetTime();									//设置时间,调用此函数,全局数组里时间值刷新到RTC硬件电路
		
		BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);			//在备份寄存器写入自己规定的标志位,用于判断RTC是不是第一次执行配置
	}
	else													//RTC不是第一次配置
	{
		RTC_WaitForSynchro();								//等待同步
		RTC_WaitForLastTask();								//等待上一次操作完成
	}
}

//如果LSE无法起振导致程序卡死在初始化函数中
//可将初始化函数替换为下述代码,使用LSI当作RTCCLK
//LSI无法由备用电源供电,故主电源掉电时,RTC走时会暂停
/* 
void MyRTC_Init(void)
{
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);
	
	PWR_BackupAccessCmd(ENABLE);
	
	if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5)
	{
		RCC_LSICmd(ENABLE);
		while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
		RCC_RTCCLKCmd(ENABLE);
		
		RTC_WaitForSynchro();
		RTC_WaitForLastTask();
		
		RTC_SetPrescaler(40000 - 1);
		RTC_WaitForLastTask();
		
		MyRTC_SetTime();
		
		BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);
	}
	else
	{
		RCC_LSICmd(ENABLE);				//即使不是第一次配置,也需要再次开启LSI时钟
		while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
		RCC_RTCCLKCmd(ENABLE);
		
		RTC_WaitForSynchro();
		RTC_WaitForLastTask();
	}
}*/

/**
  * 函    数:RTC设置时间
  * 参    数:无
  * 返 回 值:无
  * 说    明:调用此函数后,全局数组里时间值将刷新到RTC硬件电路
  */
void MyRTC_SetTime(void)
{
	time_t time_cnt;		//定义秒计数器数据类型
	struct tm time_date;	//定义日期时间数据类型
	
	time_date.tm_year = MyRTC_Time[0] - 1900;		//将数组的时间赋值给日期时间结构体
	time_date.tm_mon = MyRTC_Time[1] - 1;
	time_date.tm_mday = MyRTC_Time[2];
	time_date.tm_hour = MyRTC_Time[3];
	time_date.tm_min = MyRTC_Time[4];
	time_date.tm_sec = MyRTC_Time[5];
	
	time_cnt = mktime(&time_date) - 8 * 60 * 60;	//调用mktime函数,将日期时间转换为秒计数器格式
													//- 8 * 60 * 60为东八区的时区调整
	
	RTC_SetCounter(time_cnt);						//将秒计数器写入到RTC的CNT中
	RTC_WaitForLastTask();							//等待上一次操作完成
}

/**
  * 函    数:RTC读取时间
  * 参    数:无
  * 返 回 值:无
  * 说    明:调用此函数后,RTC硬件电路里时间值将刷新到全局数组
  */
void MyRTC_ReadTime(void)
{
	time_t time_cnt;		//定义秒计数器数据类型
	struct tm time_date;	//定义日期时间数据类型
	
	time_cnt = RTC_GetCounter() + 8 * 60 * 60;		//读取RTC的CNT,获取当前的秒计数器
													//+ 8 * 60 * 60为东八区的时区调整
	
	time_date = *localtime(&time_cnt);				//使用localtime函数,将秒计数器转换为日期时间格式
	
	MyRTC_Time[0] = time_date.tm_year + 1900;		//将日期时间结构体赋值给数组的时间
	MyRTC_Time[1] = time_date.tm_mon + 1;
	MyRTC_Time[2] = time_date.tm_mday;
	MyRTC_Time[3] = time_date.tm_hour;
	MyRTC_Time[4] = time_date.tm_min;
	MyRTC_Time[5] = time_date.tm_sec;
}
#ifndef __MYRTC_H
#define __MYRTC_H

extern uint16_t MyRTC_Time[];

void MyRTC_Init(void);
void MyRTC_SetTime(void);
void MyRTC_ReadTime(void);

#endif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/543117.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

YOLO系列 | 正负样本分配策略

文章目录 1 Max-IoU matching(YOLOv1~V3)2 Multi-Anchor策略(YOLOv4)3 基于宽高比的领域匹配策略(YOLOv5)4 simOTA(Simple Optimal Transport Assignment)匹配策略(YOLOX, YOLOv6)5 领域匹配simOTA(YOLOv7)6 TaskAlignedAssigner匹配策略(YOLOv8, YOLOv9)参考资料 1 Max-IoU ma…

Appium的使用:混合APP切换上下文

网上别的文章说要把移动端的webview设置成调试模式,才能看到下图信息。 但我这里是直接在Android Studio新建了一个空白活动,然后放的webview控件,写的webview代码,直接部署到模拟器上,在确定adb可以连接到模拟器后,在桌面浏览器输入chrome://inspect/#devices后就可以看…

代码随想录训练营

Day23代码随想录 669.修剪二叉搜索树 1.题目描述 给你二叉搜索树的根节点 root &#xff0c;同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树&#xff0c;使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即&#xff0c;如果没有…

最坏情况为线性时间的第k大元素

在统计和数据分析中&#xff0c;我们经常会遇到求最大值、最小值、中位数、四分位数、Top K等类似需求&#xff0c;其实它们都属于顺序统计量&#xff0c;本文将对顺序统计量的定义和求解算法进行介绍&#xff0c;重点介绍如何在最差时间复杂度也是线性的情况下求解第k大元素。…

Java 二叉数(1)

一、认识树 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。它具有以下的特点&#xff1a; 有一个特殊的…

ES6 promise

Promise是在 JavaScript&#xff08;也称为 ECMAScript-6&#xff09;中实现异步编程的一种方式。JavaScript 中使用Promise进行异步编程。对于异步编程&#xff0c;JavaScript 使用回调&#xff0c;但使用回调会出现一个问题&#xff0c;即回调地狱&#xff08;多个或依赖回调…

Kubernetes 升级不弃 Docker:KubeKey 的丝滑之道

作者&#xff1a;尹珉&#xff0c;KubeSphere Ambaasador&Contributor&#xff0c;KubeSphere 社区用户委员会杭州站站长。 引言 随着 Kubernetes 社区的不断发展&#xff0c;即将迎来 Kubernetes 1.30 版本的迭代。在早先的 1.24 版本中&#xff0c;社区作出一个重要决策…

前后端分离的Java医院云HIS信息管理系统源码(LIS源码+电子病历源码)

HIS系统采用主流成熟技术开发&#xff0c;软件结构简洁、代码规范易阅读&#xff0c;SaaS应用&#xff0c;全浏览器访问前后端分离&#xff0c;多服务协同&#xff0c;服务可拆分&#xff0c;功能易扩展。多医院、多集团统一登录患者主索引建立、主数据管理&#xff0c;统一对外…

李廉洋;4.11#黄金,WTI原油#行情走势分析策略。

美国银行预计&#xff0c;在今天召开的欧洲央行会议上不会有重大的政策变化&#xff0c;但欧洲央行正逐渐接近开始降息&#xff0c;尽管它采取的是一种谨慎的、依赖数据的方式。虽然欧洲央行对降息轨迹的信心不断增强&#xff0c;但降息的具体速度和幅度仍未公布&#xff0c;而…

【深度学习实战(2)】如何使用matplotlib.pyplot模块记录自己的训练,验证损失

一、matplotlib库 在我们自己训练模型时&#xff0c;常常会使用matplotlib库来绘制oss和accuracy的曲线图&#xff0c;帮助我们分析模型的训练表现。 matplotlib库安装&#xff1a;pip install matplotlib 二、代码 import matplotlib.pyplot as plt import torch import to…

CloudCompare——体元法计算树冠体积

目录 1.概述2.软件实现3.完整操作4.相关代码 本文由CSDN点云侠原创&#xff0c;CloudCompare——体元法计算树冠体积&#xff0c;爬虫自重。如果你不是在点云侠的博客中看到该文章&#xff0c;那么此处便是不要脸的爬虫与GPT生成的文章。 1.概述 体元法将树冠所在的空间范围划…

直驱式风电机组与双馈风电机组的发电机之间显著的区别

直驱式风电机组与双馈风电机组的发电机之间存在一些显著的区别&#xff0c;这些区别主要体现在以下几个方面&#xff1a; 结构设计&#xff1a;直驱式风力发电机组的发电机通常采用多极结构&#xff0c;包括多极内转子结构和多极外转子结构等&#xff0c;结构相对简单。而双馈…

NVM下载和安装NodeJS教程

nvm文档手册 - nvm是一个nodejs版本管理工具 - nvm中文网 官网下载nvm&#xff0c;选择版本 打开nvm文件夹下的settings.txt文件&#xff0c;在最后添加以下代码&#xff1a; node_mirror: https://npm.taobao.org/mirrors/node/ npm_mirror: https://npm.taobao.org/mirrors…

NAT技术

网络技术深似海呀&#xff0c;一段时间不用又忘。 是什么 NAT技术是网络防火墙技术的一部分&#xff0c;可以作用在linux防火墙或者设备防火墙&#xff0c;NAT技术可以实现地址和端口的转换&#xff0c;主要还是为了网络连通性。 作用 存在以下三个IP&#xff0c;A(10.234.…

vue3+element plus图片预览点击按钮直接显示图片的预览形式

1 需求 直接上需求&#xff1a; 我想要直接点击下面这个“预览”按钮&#xff0c;然后呈现出预览图片的形式 ok&#xff0c;需求知道了&#xff0c;下面让我们来看看如何实现吧 ~ 2 实现 template部分 <el-buttontype"primary"size"small"click&qu…

Java集合(一)--Map(2)

ConcurrentHashMap与HashTable 底层实现 在JDK1.7时&#xff0c;底层采用的是分段数组&#xff0b;链表的形式&#xff0c;在JDK1.8之后&#xff0c;采用的是与HashMap相同的形式&#xff0c;数组链表/红黑树。而HashTable采用的是数组链表的形式。 如何实现线程安全 Concu…

SpringBoot新增菜品模块开发(事务管理+批量插入+主键回填)

需求分析与设计 一&#xff1a;产品原型 后台系统中可以管理菜品信息&#xff0c;通过 新增功能来添加一个新的菜品&#xff0c;在添加菜品时需要选择当前菜品所属的菜品分类&#xff0c;并且需要上传菜品图片。 新增菜品原型&#xff1a; 当填写完表单信息, 点击"保存…

Python里安装了库却报错找不到是怎么回事?

你在写代码的时候有没有遇到过这样的问题&#xff1a; 明明已经用pip安装好了一个Python模块&#xff0c; 但当你在代码中使用时&#xff0c;却给你报错说找不到这个库。 出现这种情况&#xff0c;绝大多数都是因为你安装模块的那个pip&#xff0c;和你执行代码时的python&…

【数据分析】嫡权法EWM

总结&#xff1a;基于熵值信息来计算出权重&#xff0c;数据具有客观性。 目录 简介 计算步骤 案例 简介 熵值法原理 熵值法的基本思路是根据指标变异性的大小来确定客观权重信息熵:信息量的期望。可以理解成不确定性的大小&#xff0c;不确定性越大&#xff0c;信息熵也就…

js脚本解决因挂VPN导致boss上高德地图无法正常规划公交路线问题

​ 情况说明&#xff1a; 最开始一直以为boss上的查询自己所在地点到面试地点的公交的功能有bug,总是规划路线失败&#xff0c;结果这个一调试&#xff0c;发现是自己的经纬度有问题导致的。 程序猿嘛&#xff0c;开机VPN必须是挂着的&#xff0c;这就导致了boss获取到了错误…