竞赛 基于CNN实现谣言检测 - python 深度学习 机器学习

文章目录

  • 1 前言
    • 1.1 背景
  • 2 数据集
  • 3 实现过程
  • 4 CNN网络实现
  • 5 模型训练部分
  • 6 模型评估
  • 7 预测结果
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于CNN实现谣言检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1.1 背景

社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不安定因素,并对经济和社会产生巨大的影响。

2 数据集

本项目所使用的数据是从新浪微博不实信息举报平台抓取的中文谣言数据,数据集中共包含1538条谣言和1849条非谣言。

如下图所示,每条数据均为json格式,其中text字段代表微博原文的文字内容。

在这里插入图片描述

每个文件夹里又有很多新闻文本。

在这里插入图片描述
每个文本又是json格式,具体内容如下:

在这里插入图片描述

3 实现过程

步骤入下:

*(1)解压数据,读取并解析数据,生成all_data.txt
*(2)生成数据字典,即dict.txt
*(3)生成数据列表,并进行训练集与验证集的划分,train_list.txt 、eval_list.txt
*(4)定义训练数据集提供器train_reader和验证数据集提供器eval_reader

import zipfile
import os
import io
import random
import json
import matplotlib.pyplot as plt
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Linear, Embedding
from paddle.fluid.dygraph.base import to_variable

#解压原始数据集,将Rumor_Dataset.zip解压至data目录下
src_path="/home/aistudio/data/data36807/Rumor_Dataset.zip" #这里填写自己项目所在的数据集路径
target_path="/home/aistudio/data/Chinese_Rumor_Dataset-master"
if(not os.path.isdir(target_path)):
    z = zipfile.ZipFile(src_path, 'r')
    z.extractall(path=target_path)
    z.close()

#分别为谣言数据、非谣言数据、全部数据的文件路径
rumor_class_dirs = os.listdir(target_path+"非开源数据集") # 这里填写自己项目所在的数据集路径
non_rumor_class_dirs = os.listdir(target_path+"非开源数据集")
original_microblog = target_path+"非开源数据集"
#谣言标签为0,非谣言标签为1
rumor_label="0"
non_rumor_label="1"

#分别统计谣言数据与非谣言数据的总数
rumor_num = 0
non_rumor_num = 0
all_rumor_list = []
all_non_rumor_list = []

#解析谣言数据
for rumor_class_dir in rumor_class_dirs: 
    if(rumor_class_dir != '.DS_Store'):
        #遍历谣言数据,并解析
        with open(original_microblog + rumor_class_dir, 'r') as f:
            rumor_content = f.read()
        rumor_dict = json.loads(rumor_content)
        all_rumor_list.append(rumor_label+"\t"+rumor_dict["text"]+"\n")
        rumor_num +=1
#解析非谣言数据
for non_rumor_class_dir in non_rumor_class_dirs: 
    if(non_rumor_class_dir != '.DS_Store'):
        with open(original_microblog + non_rumor_class_dir, 'r') as f2:
            non_rumor_content = f2.read()
        non_rumor_dict = json.loads(non_rumor_content)
        all_non_rumor_list.append(non_rumor_label+"\t"+non_rumor_dict["text"]+"\n")
        non_rumor_num +=1
        
print("谣言数据总量为:"+str(rumor_num))
print("非谣言数据总量为:"+str(non_rumor_num))

#全部数据进行乱序后写入all_data.txt
data_list_path="/home/aistudio/data/"
all_data_path=data_list_path + "all_data.txt"
all_data_list = all_rumor_list + all_non_rumor_list

random.shuffle(all_data_list)

#在生成all_data.txt之前,首先将其清空
with open(all_data_path, 'w') as f:
    f.seek(0)
    f.truncate() 
    
with open(all_data_path, 'a') as f:
    for data in all_data_list:
        f.write(data) 
print('all_data.txt已生成')

在这里插入图片描述

接下来就是生成数据字典。


# 生成数据字典
def create_dict(data_path, dict_path):
with open(dict_path, ‘w’) as f:
f.seek(0)
f.truncate()

    dict_set = set()
    # 读取全部数据
    with open(data_path, 'r', encoding='utf-8') as f:
        lines = f.readlines()
    # 把数据生成一个元组
    for line in lines:
        content = line.split('\t')[-1].replace('\n', '')
        for s in content:
            dict_set.add(s)
    # 把元组转换成字典,一个字对应一个数字
    dict_list = []
    i = 0
    for s in dict_set:
        dict_list.append([s, i])
        i += 1
    # 添加未知字符
    dict_txt = dict(dict_list)
    end_dict = {"": i}
    dict_txt.update(end_dict)
    # 把这些字典保存到本地中
    with open(dict_path, 'w', encoding='utf-8') as f:
        f.write(str(dict_txt))
    print("数据字典生成完成!",'\t','字典长度为:',len(dict_list))

我们可以查看一下dict_txt的内容

在这里插入图片描述

接下来就是数据列表的生成


# 创建序列化表示的数据,并按照一定比例划分训练数据与验证数据
def create_data_list(data_list_path):

    with open(os.path.join(data_list_path, 'dict.txt'), 'r', encoding='utf-8') as f_data:
        dict_txt = eval(f_data.readlines()[0])

    with open(os.path.join(data_list_path, 'all_data.txt'), 'r', encoding='utf-8') as f_data:
        lines = f_data.readlines()
    
    i = 0
    with open(os.path.join(data_list_path, 'eval_list.txt'), 'a', encoding='utf-8') as f_eval,\
    open(os.path.join(data_list_path, 'train_list.txt'), 'a', encoding='utf-8') as f_train:
        for line in lines:
            title = line.split('\t')[-1].replace('\n', '')
            lab = line.split('\t')[0]
            t_ids = ""
            if i % 8 == 0:
                for s in title:
                    temp = str(dict_txt[s])
                    t_ids = t_ids + temp + ','
                t_ids = t_ids[:-1] + '\t' + lab + '\n'
                f_eval.write(t_ids)
            else:
                for s in title:
                    temp = str(dict_txt[s])
                    t_ids = t_ids + temp + ','
                t_ids = t_ids[:-1] + '\t' + lab + '\n'
                f_train.write(t_ids)
            i += 1
        
    print("数据列表生成完成!")

定义数据读取器


def data_reader(file_path, phrase, shuffle=False):
all_data = []
with io.open(file_path, “r”, encoding=‘utf8’) as fin:
for line in fin:
cols = line.strip().split(“\t”)
if len(cols) != 2:
continue
label = int(cols[1])

            wids = cols[0].split(",")
            all_data.append((wids, label))

    if shuffle:
        if phrase == "train":
            random.shuffle(all_data)

    def reader():
        for doc, label in all_data:
            yield doc, label
    return reader

class SentaProcessor(object):
    def __init__(self, data_dir,):
        self.data_dir = data_dir
        
    def get_train_data(self, data_dir, shuffle):
        return data_reader((self.data_dir + "train_list.txt"), 
                            "train", shuffle)

    def get_eval_data(self, data_dir, shuffle):
        return data_reader((self.data_dir + "eval_list.txt"), 
                            "eval", shuffle)

    def data_generator(self, batch_size, phase='train', shuffle=True):
        if phase == "train":
            return paddle.batch(
                self.get_train_data(self.data_dir, shuffle),
                batch_size,
                drop_last=True)
        elif phase == "eval":
            return paddle.batch(
                self.get_eval_data(self.data_dir, shuffle),
                batch_size,
                drop_last=True)
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'eval']")

总之在数据处理这一块需要我们注意的是一共生成以下的几个文件。

在这里插入图片描述

4 CNN网络实现

接下来就是构建以及配置卷积神经网络(Convolutional Neural Networks,
CNN),开篇也说了,其实这里有很多模型的选择,之所以选择CNN是因为让我们熟悉CNN的相关实现。 输入词向量序列,产生一个特征图(feature
map),对特征图采用时间维度上的最大池化(max pooling over
time)操作得到此卷积核对应的整句话的特征,最后,将所有卷积核得到的特征拼接起来即为文本的定长向量表示,对于文本分类问题,将其连接至softmax即构建出完整的模型。在实际应用中,我们会使用多个卷积核来处理句子,窗口大小相同的卷积核堆叠起来形成一个矩阵,这样可以更高效的完成运算。另外,我们也可使用窗口大小不同的卷积核来处理句子。具体的流程如下:

在这里插入图片描述
首先我们构建单层CNN神经网络。



    #单层
    class SimpleConvPool(fluid.dygraph.Layer):
        def __init__(self,
                     num_channels, # 通道数
                     num_filters,  # 卷积核数量
                     filter_size,  # 卷积核大小
                     batch_size=None): # 16
            super(SimpleConvPool, self).__init__()
            self.batch_size = batch_size
            self._conv2d = Conv2D(num_channels = num_channels,
                num_filters = num_filters,
                filter_size = filter_size,
                act='tanh')
            self._pool2d = fluid.dygraph.Pool2D(
                pool_size = (150 - filter_size[0]+1,1),
                pool_type = 'max',
                pool_stride=1
            )
    
        def forward(self, inputs):
            # print('SimpleConvPool_inputs数据纬度',inputs.shape) # [16, 1, 148, 128]
            x = self._conv2d(inputs)
            x = self._pool2d(x)
            x = fluid.layers.reshape(x, shape=[self.batch_size, -1])
            return x



    class CNN(fluid.dygraph.Layer):
        def __init__(self):
            super(CNN, self).__init__()
            self.dict_dim = train_parameters["vocab_size"]
            self.emb_dim = 128   #emb纬度
            self.hid_dim = [32]  #卷积核数量
            self.fc_hid_dim = 96  #fc参数纬度
            self.class_dim = 2    #分类数
            self.channels = 1     #输入通道数
            self.win_size = [[3, 128]]  # 卷积核尺寸
            self.batch_size = train_parameters["batch_size"] 
            self.seq_len = train_parameters["padding_size"]
            self.embedding = Embedding( 
                size=[self.dict_dim + 1, self.emb_dim],
                dtype='float32', 
                is_sparse=False)
            self._simple_conv_pool_1 = SimpleConvPool(
                self.channels,
                self.hid_dim[0],
                self.win_size[0],
                batch_size=self.batch_size)
            self._fc1 = Linear(input_dim = self.hid_dim[0],
                                output_dim = self.fc_hid_dim,
                                act="tanh")
            self._fc_prediction = Linear(input_dim = self.fc_hid_dim,
                                        output_dim = self.class_dim,
                                        act="softmax")
    
        def forward(self, inputs, label=None):
    
            emb = self.embedding(inputs) # [2400, 128]
            # print('CNN_emb',emb.shape)  
            emb = fluid.layers.reshape(   # [16, 1, 150, 128]
                emb, shape=[-1, self.channels , self.seq_len, self.emb_dim])
            # print('CNN_emb',emb.shape)
            conv_3 = self._simple_conv_pool_1(emb)
            fc_1 = self._fc1(conv_3)
            prediction = self._fc_prediction(fc_1)
            if label is not None:
                acc = fluid.layers.accuracy(prediction, label=label)
                return prediction, acc
            else:
                return prediction



接下来就是参数的配置,不过为了在模型训练过程中更直观的查看我们训练的准确率,我们首先利用python的matplotlib.pyplt函数实现一个可视化图,具体的实现如下:


def draw_train_process(iters, train_loss, train_accs):
title=“training loss/training accs”
plt.title(title, fontsize=24)
plt.xlabel(“iter”, fontsize=14)
plt.ylabel(“loss/acc”, fontsize=14)
plt.plot(iters, train_loss, color=‘red’, label=‘training loss’)
plt.plot(iters, train_accs, color=‘green’, label=‘training accs’)
plt.legend()
plt.grid()
plt.show()

5 模型训练部分


def train():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
# with fluid.dygraph.guard(place = fluid.CPUPlace()):

        processor = SentaProcessor( data_dir="data/")
    
        train_data_generator = processor.data_generator(
            batch_size=train_parameters["batch_size"],
            phase='train',
            shuffle=True)
            
        model = CNN()
        sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["adam"],parameter_list=model.parameters())
        steps = 0
        Iters,total_loss, total_acc = [], [], []
        for eop in range(train_parameters["epoch"]):
            for batch_id, data in enumerate(train_data_generator()):
                steps += 1
                #转换为 variable 类型
                doc = to_variable(
                    np.array([
                        np.pad(x[0][0:train_parameters["padding_size"]],  #对句子进行padding,全部填补为定长150
                              (0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),
                               'constant',
                              constant_values=(train_parameters["vocab_size"])) # 用  的id 进行填补
                        for x in data
                    ]).astype('int64').reshape(-1))
                #转换为 variable 类型
                label = to_variable(
                    np.array([x[1] for x in data]).astype('int64').reshape(
                        train_parameters["batch_size"], 1))

                model.train() #使用训练模式
                prediction, acc = model(doc, label)
                loss = fluid.layers.cross_entropy(prediction, label)
                avg_loss = fluid.layers.mean(loss)
                avg_loss.backward()
                sgd_optimizer.minimize(avg_loss)
                model.clear_gradients()
                
                if steps % train_parameters["skip_steps"] == 0:
                    Iters.append(steps)
                    total_loss.append(avg_loss.numpy()[0])
                    total_acc.append(acc.numpy()[0])
                    print("eop: %d, step: %d, ave loss: %f, ave acc: %f" %
                         (eop, steps,avg_loss.numpy(),acc.numpy()))
                if steps % train_parameters["save_steps"] == 0:
                    save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)
                    print('save model to: ' + save_path)
                    fluid.dygraph.save_dygraph(model.state_dict(),
                                                   save_path)
                # break
    draw_train_process(Iters, total_loss, total_acc)

训练的过程以及训练的结果如下:

在这里插入图片描述

6 模型评估


def to_eval():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):
processor = SentaProcessor(data_dir=“data/”) #写自己的路径

        eval_data_generator = processor.data_generator(
                batch_size=train_parameters["batch_size"],
                phase='eval',
                shuffle=False)

        model_eval = CNN() #示例化模型
        model, _ = fluid.load_dygraph("data//save_dir_180.pdparams") #写自己的路径
        model_eval.load_dict(model)

        model_eval.eval() # 切换为eval模式
        total_eval_cost, total_eval_acc = [], []
        for eval_batch_id, eval_data in enumerate(eval_data_generator()):
            eval_np_doc = np.array([np.pad(x[0][0:train_parameters["padding_size"]],
                                    (0, train_parameters["padding_size"] -len(x[0][0:train_parameters["padding_size"]])),
                                    'constant',
                                    constant_values=(train_parameters["vocab_size"]))
                            for x in eval_data
                            ]).astype('int64').reshape(-1)
            eval_label = to_variable(
                                    np.array([x[1] for x in eval_data]).astype(
                                    'int64').reshape(train_parameters["batch_size"], 1))
            eval_doc = to_variable(eval_np_doc)
            eval_prediction, eval_acc = model_eval(eval_doc, eval_label)
            loss = fluid.layers.cross_entropy(eval_prediction, eval_label)
            avg_loss = fluid.layers.mean(loss)
            total_eval_cost.append(avg_loss.numpy()[0])
            total_eval_acc.append(eval_acc.numpy()[0])

    print("Final validation result: ave loss: %f, ave acc: %f" %
        (np.mean(total_eval_cost), np.mean(total_eval_acc) ))   

评估准确率如下:

在这里插入图片描述

7 预测结果


# 获取数据
def load_data(sentence):
# 读取数据字典
with open(‘data/dict.txt’, ‘r’, encoding=‘utf-8’) as f_data:
dict_txt = eval(f_data.readlines()[0])
dict_txt = dict(dict_txt)
# 把字符串数据转换成列表数据
keys = dict_txt.keys()
data = []
for s in sentence:
# 判断是否存在未知字符
if not s in keys:
s = ‘’
data.append(int(dict_txt[s]))
return data

train_parameters["batch_size"] = 1
lab = [ '谣言', '非谣言']
 
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):
    
    data = load_data('兴仁县今天抢小孩没抢走,把孩子母亲捅了一刀,看见这车的注意了,真事,车牌号辽HFM055!!!!!赶紧散播! 都别带孩子出去瞎转悠了 尤其别让老人自己带孩子出去 太危险了 注意了!!!!辽HFM055北京现代朗动,在各学校门口抢小孩!!!110已经 证实!!全市通缉!!')
    data_np = np.array(data)
    data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)

    infer_np_doc = to_variable(data_np)
   
    model_infer = CNN()
    model, _ = fluid.load_dygraph("data/save_dir_900.pdparams")
    model_infer.load_dict(model)
    model_infer.eval()
    result = model_infer(infer_np_doc)
    print('预测结果为:', lab[np.argmax(result.numpy())])

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/543084.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ELFK日志分析系统之搭建ELF+Filebeaat+Zookeeper+Kafka

引言 结合前面所学 http://ELK日志分析系统 一、为什么要做日志分析平台 随着业务量的增长,每天业务服务器将会产生上亿条的日志,单个日志文件达几个GB,这时我们发现用Linux自带工具,cat grep awk 分析越来越力不从心了&#…

从0到1实现RPC | 11 丰富测试案例

测试案例主要针对服务消费者consumer,复杂逻辑都在consumer端。 常规int类型,返回User对象 参数类型转换,主要实现逻辑都在TypeUtils工具类中。 测试方法重载,同名方法,参数不同 方法签名的实现,主要逻辑…

RHCE--dns正反向解析小实验

一、准备工作 1.关闭防火墙 [rootserver ~]# setenforce 0 [rootserver ~]# systemctl stop firewalld 2.安装软件 [rootserver ~]# yum install bind -y 二、正向解析 服务端IP客户端IP网址192.168.203.128192.168.203.130www.openlab.com 服务端配置静态ip [root…

蓝桥杯嵌入式第十五届省赛真题题目

蓝桥杯昨天也考完了,大家可以看看题目 客观题题目 程序题题目

遥感卫星:探索地球的科技之旅

遥感卫星是人类探索地球、理解地球、保护地球的重要工具,其发展历程承载了人类对地球的探索与认知的历程。从最初的概念到如今的高科技应用,遥感卫星技术的发展见证了人类科技的不断进步与创新。 初心萌芽: 遥感卫星的发展始于20世纪中叶&…

AGV小车导航避障雷达SE-0533(CNS-LS05C)激光传感器RS232|RS485|CAN BUS连线说明

AGV小车导航避障雷达SE-0533(CNS-LS05C)激光传感器广泛应用到AGV小车,RGV小车,无人叉车、搬运机器人等领域。本文重点介绍AGV小车导航避障雷达SE-0533(CNS-LS05C)激光传感器RS232|RS485|CAN BUS连线说明。 一、线序定义 1、传感器线缆线序定义 SE-053…

【网络编程】高性能并发服务器源码剖析

hello !大家好呀! 欢迎大家来到我的网络编程系列之洪水网络攻击,在这篇文章中,你将会学习到在网络编程中如何搭建一个高性能的并发服务器,并且我会给出源码进行剖析,以及手绘UML图来帮助大家来理解&#xf…

【Vue】面试题

vue的组建通信方式 父子关系:props & $emit 、 $parent / $children 、 ref / $refs 、 插槽跨层级关系: provide & inject通用方案:Vuex 或 eventbus 插播:兄弟组建怎么通信? eventbusVuex通过中间件&…

【游戏开发之热更新技术】

游戏开发之热更新技术 热更新技术是指在不重新发布和安装应用的情况下,对已部署的应用程序进行更新和修补的技术。这种技术在现代软件开发中变得越来越重要,因为它能够为用户提供更加及时的服务和更好的体验。以下是一篇关于热更新技术的文章&#xff0…

HttpServletRequest/Response

HttpServletRequest 一些常用类的用法 package Demo;import javax.jws.WebService; import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import ja…

【前端】es-drager 图片同比缩放 缩放比 只修改宽 只修改高

【前端】es-drager 图片同比缩放 缩放比 ES Drager 拖拽组件 (vangleer.github.io) 核心代码 //初始宽 let width ref(108)//初始高 let height ref(72)//以下两个变量 用来区分是单独的修改宽 还是高 或者是同比 //缩放开始时的宽 let oldWidth 0 //缩放开始时的高 let o…

蓝桥杯-可获得最小值

前缀和思想: #include<bits/stdc.h>using namespace std;long long n,k;const int N200010;long long a[N],sum[N];int main() {cin>>n>>k;for(int i1;i<n;i)cin>>a[i];sort(a1,a1n);for(int i1;i<n;i){sum[i]sum[i-1]a[i];}long long ans1e18;…

【第十四届蓝桥杯省赛题目】

选择题&#xff1a; 1.设只含根结点的二叉树高度为1&#xff0c;共有62个结点的完全二叉树的高度为&#xff1f; A.4 B.5 C.6 D.7 解析&#xff1a;高度为K的满二叉树 节点数为 2k-1 &#xff0c;如果K6 最多有63个节点 故答案为6 选C 2.C中&#xff0c;bool类型的变量占用字…

LeetCode-热题100:226. 翻转二叉树

题目描述 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a; root [4,2,7,1,3,6,9] 输出&#xff1a; [4,7,2,9,6,3,1] 示例 2&#xff1a; 输入&#xff1a; root [2,1,3] 输出&#xff1a; […

华为ensp中aaa(3a)实现telnet远程连接认证配置命令

作者主页&#xff1a;点击&#xff01; ENSP专栏&#xff1a;点击&#xff01; 创作时间&#xff1a;2024年4月14日18点49分 AAA认证的全称是Authentication、Authorization、Accounting&#xff0c;中文意思是认证、授权、计费。 以下是详细解释 认证&#xff08;Authentic…

创新书荐|《哲学思维》- 信息过载时代保持独立思考12条关键原则

信息过载时代&#xff0c;我们都难以避免被信息投喂&#xff0c;被算法解读&#xff0c;独立思考的能力显得尤为宝贵。英国哲学家朱利安巴吉尼通过深入研究&#xff0c;在新书《哲学思维》中汇集了他20年间对58位全球顶尖哲学家的访谈和资料&#xff0c;精心提炼出了12条至关重…

Gradle 在 Spring 中的使用-ApiHug准备-工具篇-006

&#x1f917; ApiHug {Postman|Swagger|Api...} 快↑ 准√ 省↓ GitHub - apihug/apihug.com: All abou the Apihug apihug.com: 有爱&#xff0c;有温度&#xff0c;有质量&#xff0c;有信任ApiHug - API design Copilot - IntelliJ IDEs Plugin | Marketplace ApiHug …

AI预测小分子与蛋白的相关特征: MegaMolBART, MoFlow,ESM-1, ESM-2

1、小分子:MegaMolBART, MoFlow 1)MegaMolBART https://github.com/NVIDIA/MegaMolBART 基于 SMILES 的小分子药物发现与化学信息学深度学习模型。 2)MoFlow https://github.com/calvin-zcx/moflow 用flow流方式分子生成 2、蛋白质:ESM-1, ESM-2 https://github.com/fa…

21.5k Star , AI 智能体项目OpenDevin:少写代码,多创造(附部署教程)

Aitrainee | 公众号&#xff1a;AI进修生 这是一个旨在复制 Devin 的开源项目&#xff0c;Devin 是一位自主人工智能软件工程师&#xff0c;能够执行复杂的工程任务并在软件开发项目上与用户积极协作。该项目致力于通过开源社区的力量复制、增强和创新 Devin。 Devin 代表了一…

Solana 上创建自己的 SLPToken:简明指南

Solana 定义 Solana 是由 Solana Labs 创建的区块链平台&#xff0c;旨在提供高吞吐量和低延迟的去中心化应用&#xff08;DApps&#xff09;开发环境。它采用一系列创新技术&#xff0c;如 PoH&#xff08;Proof of History&#xff09;共识机制和 Tower BFT&#xff08;BFT …