2023年的深度学习入门指南(24) - 处理音频的大模型 OpenAI Whisper

2023年的深度学习入门指南(24) - 处理音频的大模型 OpenAI Whisper

在这一讲之前,我们所用的大模型都是针对文本的。这一讲我们增加一个新的领域,即音频。我们将介绍OpenAI的Whisper模型,它是一个处理音频的大模型。

Whisper模型的用法

Whisper是OpenAI开源的模型。它的用法非常简单,只要安装好相关的库,就可以直接用命令行来调用了。

安装就一个库:

pip install -U openai-whisper

然后就可以直接用命令行来调用了:

whisper va1.mp3 --language Chinese

我们还可以用model参数来选择模型,比如有10GB以上显存就可以选择使用large模型:

whisper va2.mp3 --model large --language Chinese

默认是small模型。还可以选择tiny, base, medium, large-v1和large-v2.

如果是遇到视频的话,那么就用ffmpeg工具将视频中的音频部分提取出来。

比如我们有一个视频02.vob,我们不知道其音频流格式是什么,我们可以通过ffmpeg命令来查看:

ffmpeg -i 02.vob

我们可以看到下面的信息:

Input #0, mpeg, from '02.VOB':
  Duration: 00:34:26.64, start: 0.290633, bitrate: 3807 kb/s
  Stream #0:0[0x1bf]: Data: dvd_nav_packet
  Stream #0:1[0x1e0]: Video: mpeg2video (Main), yuv420p(tv, bottom first), 720x576 [SAR 16:15 DAR 4:3], 25 fps, 25 tbr, 90k tbn
    Side data:
      cpb: bitrate max/min/avg: 9610000/0/0 buffer size: 1835008 vbv_delay: N/A
  Stream #0:2[0x1c0]: Audio: mp2, 48000 Hz, stereo, s16p, 224 kb/s

从中可以看到,02.vob总时长为 00:34:26.64,起始时间为 0.290633,比特率为 3807 kb/s。这个文件包含三个流:

流 #0:0 是 DVD 导航数据包。
流 #0:1 是视频流,编码格式为 MPEG-2,使用了 YUV420P 颜色空间,分辨率为 720x576 像素,采样宽高比(SAR)为 16:15,显示宽高比(DAR)为 4:3。视频帧率为 25 帧/秒,时间基数(tbn)为 90k。
流 #0:2 是音频流,编码格式为 MP2,采样率为 48000 Hz,立体声,采样位数为 s16p,比特率为 224 kb/s。

既然编码格式为mp2,那么我们就将其保存为mp2格式的音频:

ffmpeg -i 02.VOB -vn -acodec copy 02.mp2

输出如下:

ffmpeg version 6.0-full_build-www.gyan.dev Copyright (c) 2000-2023 the FFmpeg developers
  built with gcc 12.2.0 (Rev10, Built by MSYS2 project)
  configuration: --enable-gpl --enable-version3 --enable-static --disable-w32threads --disable-autodetect --enable-fontconfig --enable-iconv --enable-gnutls --enable-libxml2 --enable-gmp --enable-bzlib --enable-lzma --enable-libsnappy --enable-zlib --enable-librist --enable-libsrt --enable-libssh --enable-libzmq --enable-avisynth --enable-libbluray --enable-libcaca --enable-sdl2 --enable-libaribb24 --enable-libdav1d --enable-libdavs2 --enable-libuavs3d --enable-libzvbi --enable-librav1e --enable-libsvtav1 --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxavs2 --enable-libxvid --enable-libaom --enable-libjxl --enable-libopenjpeg --enable-libvpx --enable-mediafoundation --enable-libass --enable-frei0r --enable-libfreetype --enable-libfribidi --enable-liblensfun --enable-libvidstab --enable-libvmaf --enable-libzimg --enable-amf --enable-cuda-llvm --enable-cuvid --enable-ffnvcodec --enable-nvdec --enable-nvenc --enable-d3d11va --enable-dxva2 --enable-libvpl --enable-libshaderc --enable-vulkan --enable-libplacebo --enable-opencl --enable-libcdio --enable-libgme --enable-libmodplug --enable-libopenmpt --enable-libopencore-amrwb --enable-libmp3lame --enable-libshine --enable-libtheora --enable-libtwolame --enable-libvo-amrwbenc --enable-libilbc --enable-libgsm --enable-libopencore-amrnb --enable-libopus --enable-libspeex --enable-libvorbis --enable-ladspa --enable-libbs2b --enable-libflite --enable-libmysofa --enable-librubberband --enable-libsoxr --enable-chromaprint
  libavutil      58.  2.100 / 58.  2.100
  libavcodec     60.  3.100 / 60.  3.100
  libavformat    60.  3.100 / 60.  3.100
  libavdevice    60.  1.100 / 60.  1.100
  libavfilter     9.  3.100 /  9.  3.100
  libswscale      7.  1.100 /  7.  1.100
  libswresample   4. 10.100 /  4. 10.100
  libpostproc    57.  1.100 / 57.  1.100
Input #0, mpeg, from '02.VOB':
  Duration: 00:34:26.64, start: 0.290633, bitrate: 3807 kb/s
  Stream #0:0[0x1bf]: Data: dvd_nav_packet
  Stream #0:1[0x1e0]: Video: mpeg2video (Main), yuv420p(tv, bottom first), 720x576 [SAR 16:15 DAR 4:3], 25 fps, 25 tbr, 90k tbn
    Side data:
      cpb: bitrate max/min/avg: 9610000/0/0 buffer size: 1835008 vbv_delay: N/A
  Stream #0:2[0x1c0]: Audio: mp2, 48000 Hz, stereo, s16p, 224 kb/s
Output #0, mp2, to '02.mp2':
  Metadata:
    encoder         : Lavf60.3.100
  Stream #0:0: Audio: mp2, 48000 Hz, stereo, s16p, 224 kb/s
Stream mapping:
  Stream #0:2 -> #0:0 (copy)
Press [q] to stop, [?] for help
size=   56510kB time=00:34:26.64 bitrate= 224.0kbits/s speed=76.8x
video:0kB audio:56510kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.000000%

最后生成02.mp2。我们不用转码,直接用whisper去处理:

whisper 02.mp2 --model large --language Chinese

默认情况下,whisper会输出5种格式的文本,分别是txt纯文本格式的,vtt(Web Video Text Tracks)字幕格式的,srt - SubRip Subtitle字幕格式的,tsv制表符分隔,以及json格式的。我们可以通过--output_format来指定。如果全要输出则不用指定,或者指定all.

whisper也可以直接处理wav文件。

我们再看一个从mp4视频中提取aac音频的例子。
我们有一个mp4文件,信息如下:

Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '20230801_170327.mp4':
  Metadata:
    major_brand     : mp42
    minor_version   : 0
    compatible_brands: mp42isom
    creation_time   : 2023-08-01T09:03:27.000000Z
  Duration: 00:01:51.00, start: 0.000000, bitrate: 901 kb/s
  Stream #0:0[0x1](und): Video: h264 (High) (avc1 / 0x31637661), yuv420p(progressive), 1920x1080, 762 kb/s, 25.26 fps, 30 tbr, 10k tbn (default)
    Metadata:
      creation_time   : 2023-08-01T09:03:27.000000Z
      vendor_id       : [0][0][0][0]
      encoder         : JVT/AVC Coding
  Stream #0:1[0x2](und): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 135 kb/s (default)
    Metadata:
      creation_time   : 2023-08-01T09:03:27.000000Z
      vendor_id       : [0][0][0][0]

我们可以知道下面的视频信息:

文件名:‘20230801_170327.mp4’
创建日期:2023年8月1日,UTC时间09:03:27
视频码率:总体码率为901 kb/s
视频长度:1分钟51秒
视频开始时间:从0秒开始
视频流:

编码:h264 (High),这是一种常见的视频编码格式
帧率:大约每秒25.26帧
分辨率:1920x1080,也就是常说的1080p或全高清
码率:762 kb/s
创建日期:2023年8月1日,UTC时间09:03:27
编码器:JVT/AVC Coding
音频流:

编码:aac (LC),这是一种常见的音频编码格式
采样率:44100 Hz,这是CD质量音频的标准采样率
音频通道:立体声
码率:135 kb/s
创建日期:2023年8月1日,UTC时间09:03:27

我们用ffmpeg提取aac音频:

ffmpeg -i 20230801_170327.mp4 -vn -acodec copy 01.aac

输出如下:

Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '20230801_170327.mp4':
  Metadata:
    major_brand     : mp42
    minor_version   : 0
    compatible_brands: mp42isom
    creation_time   : 2023-08-01T09:03:27.000000Z
  Duration: 00:01:51.00, start: 0.000000, bitrate: 901 kb/s
  Stream #0:0[0x1](und): Video: h264 (High) (avc1 / 0x31637661), yuv420p(progressive), 1920x1080, 762 kb/s, 25.26 fps, 30 tbr, 10k tbn (default)
    Metadata:
      creation_time   : 2023-08-01T09:03:27.000000Z
      vendor_id       : [0][0][0][0]
      encoder         : JVT/AVC Coding
  Stream #0:1[0x2](und): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 135 kb/s (default)
    Metadata:
      creation_time   : 2023-08-01T09:03:27.000000Z
      vendor_id       : [0][0][0][0]
Output #0, adts, to '01.aac':
  Metadata:
    major_brand     : mp42
    minor_version   : 0
    compatible_brands: mp42isom
    encoder         : Lavf60.3.100
  Stream #0:0(und): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 135 kb/s (default)
    Metadata:
      creation_time   : 2023-08-01T09:03:27.000000Z
      vendor_id       : [0][0][0][0]
Stream mapping:
  Stream #0:1 -> #0:0 (copy)
Press [q] to stop, [?] for help
size=    1865kB time=00:01:50.94 bitrate= 137.7kbits/s speed=2.84e+03x
video:0kB audio:1833kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 1.782703%

最后,将获取的01.aac文件直接送给Whisper去处理:

whisper 01.aac --model large-v2 --language Chinese -output_format=txt

Whisper模型代码分析

虽然从表象上,声音和文本还是非常不同的。但是到了模型这一层,一切又回到了我们熟悉的样子。

首先是层归一化:

class LayerNorm(nn.LayerNorm):
    def forward(self, x: Tensor) -> Tensor:
        return super().forward(x.float()).type(x.dtype)

只做了一件事情,就是将泛型的x转成浮点数再前向计算。

再看它的全连接网络,就是PyTorch的线性网络的一个马甲:

class Linear(nn.Linear):
    def forward(self, x: Tensor) -> Tensor:
        return F.linear(
            x,
            self.weight.to(x.dtype),
            None if self.bias is None else self.bias.to(x.dtype),
        )

这段代码定义了一个名为 Linear 的类,它继承自 nn.Linear 类。这个类重写了父类的 forward 方法,该方法接受一个张量 x 作为输入,并返回一个张量作为输出。
在 forward 方法中,首先调用了 F.linear 函数,该函数接受三个参数:输入张量 x,权重矩阵 self.weight.to(x.dtype) 和偏置向量 self.bias.to(x.dtype)。其中,权重矩阵和偏置向量都被转换为与输入张量相同的数据类型。
如果偏置向量为 None,则第三个参数传递的是 None。否则,传递转换后的偏置向量。

然后是对卷积的封装:

class Conv1d(nn.Conv1d):
    def _conv_forward(
        self, x: Tensor, weight: Tensor, bias: Optional[Tensor]
    ) -> Tensor:
        return super()._conv_forward(
            x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
        )

跟上面是一样复刻的,就不多解释了。

接着,熟悉的东西来了,位置嵌入:

def sinusoids(length, channels, max_timescale=10000):
    """Returns sinusoids for positional embedding"""
    assert channels % 2 == 0
    log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
    inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
    scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
    return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)

代码中使用了一个断言语句来确保 channels 是偶数。然后计算出 log_timescale_increment,它表示对数时间尺度的增量。接下来,使用 torch.exp 函数和 torch.arange 函数计算出逆时间尺度 inv_timescales。
然后,代码计算出缩放后的时间 scaled_time,它是一个二维张量,其中每一行都是一个时间序列。最后,使用 torch.cat 函数将缩放后的时间的正弦值和余弦值拼接在一起,并返回结果。

再然后,多头注意力果然就登场了:

class MultiHeadAttention(nn.Module):
    def __init__(self, n_state: int, n_head: int):
        super().__init__()
        self.n_head = n_head
        self.query = Linear(n_state, n_state)
        self.key = Linear(n_state, n_state, bias=False)
        self.value = Linear(n_state, n_state)
        self.out = Linear(n_state, n_state)

    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        mask: Optional[Tensor] = None,
        kv_cache: Optional[dict] = None,
    ):
        q = self.query(x)

        if kv_cache is None or xa is None or self.key not in kv_cache:
            # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
            # otherwise, perform key/value projections for self- or cross-attention as usual.
            k = self.key(x if xa is None else xa)
            v = self.value(x if xa is None else xa)
        else:
            # for cross-attention, calculate keys and values once and reuse in subsequent calls.
            k = kv_cache[self.key]
            v = kv_cache[self.value]

        wv, qk = self.qkv_attention(q, k, v, mask)
        return self.out(wv), qk

    def qkv_attention(
        self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
    ):
        n_batch, n_ctx, n_state = q.shape
        scale = (n_state // self.n_head) ** -0.25
        q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
        k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
        v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)

        qk = q @ k
        if mask is not None:
            qk = qk + mask[:n_ctx, :n_ctx]
        qk = qk.float()

        w = F.softmax(qk, dim=-1).to(q.dtype)
        return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()

看了这么多版的多头注意力,这个就不用多解释了吧。

然后是将多头注意力封装为残差块。如果不记得什么是残差块的,我们复习一下结构图:

class ResidualAttentionBlock(nn.Module):
    def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
        super().__init__()

        self.attn = MultiHeadAttention(n_state, n_head)
        self.attn_ln = LayerNorm(n_state)

        self.cross_attn = (
            MultiHeadAttention(n_state, n_head) if cross_attention else None
        )
        self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None

        n_mlp = n_state * 4
        self.mlp = nn.Sequential(
            Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)
        )
        self.mlp_ln = LayerNorm(n_state)

    def forward(
        self,
        x: Tensor,
        xa: Optional[Tensor] = None,
        mask: Optional[Tensor] = None,
        kv_cache: Optional[dict] = None,
    ):
        x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
        if self.cross_attn:
            x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
        x = x + self.mlp(self.mlp_ln(x))
        return x

Whisper的编码器,编进来的是语音:

class AudioEncoder(nn.Module):
    def __init__(
        self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
    ):
        super().__init__()
        self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
        self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
        self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))

        self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
            [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
        )
        self.ln_post = LayerNorm(n_state)

    def forward(self, x: Tensor):
        """
        x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
            the mel spectrogram of the audio
        """
        x = F.gelu(self.conv1(x))
        x = F.gelu(self.conv2(x))
        x = x.permute(0, 2, 1)

        assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
        x = (x + self.positional_embedding).to(x.dtype)

        for block in self.blocks:
            x = block(x)

        x = self.ln_post(x)
        return x

编码器这边,初始化了2个卷积层conv1和conv2,用于降维和下采样语音数据。
然后初始化了一个positional_embedding,这是个位置编码,用来表示时间步信息。
再初始化了多个残差自注意力模块ResidualAttentionBlock,把编码通过自注意力块传递。

forward过程:

  • 将语音数据传入conv1、conv2提取特征
  • 加上positional_embedding表示时间步
  • 传入自注意力ResidualAttentionBlock
  • LayerNorm归一化
  • 输出编码结果

而解码器是输出的文本,就没有卷积网络什么事儿了,就是残差多头注意力块:

class TextDecoder(nn.Module):
    def __init__(
        self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
    ):
        super().__init__()

        self.token_embedding = nn.Embedding(n_vocab, n_state)
        self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))

        self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
            [
                ResidualAttentionBlock(n_state, n_head, cross_attention=True)
                for _ in range(n_layer)
            ]
        )
        self.ln = LayerNorm(n_state)

        mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
        self.register_buffer("mask", mask, persistent=False)

    def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
        """
        x : torch.LongTensor, shape = (batch_size, <= n_ctx)
            the text tokens
        xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
            the encoded audio features to be attended on
        """
        offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
        x = (
            self.token_embedding(x)
            + self.positional_embedding[offset : offset + x.shape[-1]]
        )
        x = x.to(xa.dtype)

        for block in self.blocks:
            x = block(x, xa, mask=self.mask, kv_cache=kv_cache)

        x = self.ln(x)
        logits = (
            x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)
        ).float()

        return logits

简而言之,文本解码器由下面几层网络组成:

  • 一个将 token 转换为隐藏状态的词嵌入层
  • 一个添加位置信息的 positional embedding 层
  • 一个由 residual attention blocks 组成的堆栈
  • 一个对隐藏状态进行归一化的层 normalization 层
  • 一个计算输出 logits 的线性层

最后,将音频编码器与文本解码器组合在一起,就是一个Whipser:

class Whisper(nn.Module):
    def __init__(self, dims: ModelDimensions):
        super().__init__()
        self.dims = dims
        self.encoder = AudioEncoder(
            self.dims.n_mels,
            self.dims.n_audio_ctx,
            self.dims.n_audio_state,
            self.dims.n_audio_head,
            self.dims.n_audio_layer,
        )
        self.decoder = TextDecoder(
            self.dims.n_vocab,
            self.dims.n_text_ctx,
            self.dims.n_text_state,
            self.dims.n_text_head,
            self.dims.n_text_layer,
        )
        # use the last half layers for alignment by default; see `set_alignment_heads()` below
        all_heads = torch.zeros(
            self.dims.n_text_layer, self.dims.n_text_head, dtype=torch.bool
        )
        all_heads[self.dims.n_text_layer // 2 :] = True
        self.register_buffer("alignment_heads", all_heads.to_sparse(), persistent=False)

    def set_alignment_heads(self, dump: bytes):
        array = np.frombuffer(
            gzip.decompress(base64.b85decode(dump)), dtype=bool
        ).copy()
        mask = torch.from_numpy(array).reshape(
            self.dims.n_text_layer, self.dims.n_text_head
        )
        self.register_buffer("alignment_heads", mask.to_sparse(), persistent=False)

    def embed_audio(self, mel: torch.Tensor):
        return self.encoder(mel)

    def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor):
        return self.decoder(tokens, audio_features)

    def forward(
        self, mel: torch.Tensor, tokens: torch.Tensor
    ) -> Dict[str, torch.Tensor]:
        return self.decoder(tokens, self.encoder(mel))

    @property
    def device(self):
        return next(self.parameters()).device

    @property
    def is_multilingual(self):
        return self.dims.n_vocab == 51865

    def install_kv_cache_hooks(self, cache: Optional[dict] = None):
        cache = {**cache} if cache is not None else {}
        hooks = []

        def save_to_cache(module, _, output):
            if module not in cache or output.shape[1] > self.dims.n_text_ctx:
                # save as-is, for the first token or cross attention
                cache[module] = output
            else:
                cache[module] = torch.cat([cache[module], output], dim=1).detach()
            return cache[module]

        def install_hooks(layer: nn.Module):
            if isinstance(layer, MultiHeadAttention):
                hooks.append(layer.key.register_forward_hook(save_to_cache))
                hooks.append(layer.value.register_forward_hook(save_to_cache))

        self.decoder.apply(install_hooks)
        return cache, hooks

    detect_language = detect_language_function
    transcribe = transcribe_function
    decode = decode_function

init 方法中,首先初始化了一个 AudioEncoder 对象作为音频编码器,并初始化了一个 TextDecoder 对象作为文本解码器。然后创建了一个全零张量,表示所有的注意力头都不用于对齐。接下来,代码将张量的后一半设置为 True,表示默认使用后一半的注意力头进行对齐。最后,将张量注册为稀疏缓冲区。

接下来是 set_alignment_heads 方法,它接受一个字节串作为输入。这个方法用于设置用于对齐的多头注意力。首先使用 base85 解码和 gzip 解压缩对输入字节串进行处理,然后将其转换为布尔型数组。接下来,使用 torch.from_numpy 函数将数组转换为张量,并调整其形状。最后,将张量注册为稀疏缓冲区。

接下来是 embed_audio 方法,它接受一个声音频谱作为输入,并返回音频编码器的输出。然后是 logits 方法,它接受两个张量作为输入:文本令牌和音频特征。这个方法返回文本解码器的输出。

接下来是 forward 方法,它接受两个张量作为输入:声音频谱和文本令牌。这个方法首先使用音频编码器对声音频谱进行编码,然后将结果传递给文本解码器,并返回结果。

最后是一些属性和方法。其中 device 属性返回模型所在的设备;is_multilingual 属性返回模型是否支持多语言;install_kv_cache_hooks 方法用于安装键值缓存钩子;detect_language、transcribe 和 decode 分别是检测语言、转录和解码的函数。

小结

这是我们首次接触多模态的Transformer模型。其实,除了编码器和解码器跟媒体数据不同而有不同之外,其它用的知识点跟我们之前学习的大模型别无二致。

这也正是大模型能力强大之处。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/54294.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】yum工具的认识及使用

【Linux】yum工具的认识及使用 1.知识点补充2.yum是什么3.yum常用指令3.1查看软件安装包3.1.1关于rzsz 3.2安装软件3.3卸载软件 4.yum扩展4.1扩展14.2扩展24.3扩展3 什么是工具&#xff1f; 本质上也是指令 1.知识点补充 1.我们一般安装软件&#xff0c;是不是需要把软件安装…

【C++】开源:Linux端V4L2视频设备库

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Linux端V4L2视频设备库。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c;下…

正则表达式在格式校验中的应用以及包装类的重要性

文章目录 正则表达式&#xff1a;做格式校验包装类&#xff1a;在基本数据类型与引用数据类型间的桥梁总结 在现代IT技术岗位的面试中&#xff0c;掌握正则表达式的应用以及理解包装类的重要性是非常有益的。这篇博客将围绕这两个主题展开&#xff0c;帮助读者更好地面对面试挑…

DoIP学习笔记系列:(一)DoIP协议概述

文章目录 1. 为什么会有DoIP协议的需求产生?2. DoIP协议入门2.1 传输层协议和网络层服务2.2 物理层和数据链路层2.3 协议介绍2.3.1 报文封装结构2.3.2 端口号2.3.3 DoIP报文格式2.3.3.1 DoIP首部,协议版本号2.3.3.2 DoIP首部,协议版本号取反2.3.3.3 DoIP首部,负载类型2.3.3…

未能加载导入的项目文件,缺少根元素

项目场景&#xff1a; VS2019开发过程中&#xff0c;由于操作不当或其他原因导致报错。 问题描述 解决方案&#xff1a; 找到同名文件&#xff0c;删除即可

树莓派微型 web 服务器——正式设计报告

树莓派微型web服务器 摘要 这篇博客介绍了一个基于树莓派的轻量级服务器项目。树莓派是一款低成本、小型化的单板计算机&#xff0c;具有较低的功耗和良好的可扩展性。该项目利用树莓派搭建了一个功能简洁但性能稳定的服务器环境&#xff0c;适用于小型应用或个人使用。该轻量…

AD21 PCB设计的高级应用(八)Draftsman的应用

&#xff08;八&#xff09;Draftsman的应用 1.创建Draftsman文档2.Draftsman页面选项设置3.放置绘图数据3.1 装配图3.2 板制造图3.3 钻孔图和钻孔列表3.4 图层堆栈图例3.5 BOM3.6 标注、注释、测量尺寸 4.文档输出4.1 打印或者导出为PDF4.2 添加到Output job Draftsman 是为电…

GifGun for Mac插件,帮你输出GIF动画格式

GifGun for Mac是一款安装在After Effects中使用的AE快速输出GIF动图格式插件&#xff0c;你可以使用gifgun插件直接输出GIF动画格式&#xff0c;支持自定义GIF文件的大小、帧数率等各种属性&#xff01; AE插件下载-GifGun for Mac(AE快速输出GIF动图格式插件)支持AE 2022- Ma…

TPlink云路由器界面端口映射设置方法?快解析内网穿透能实现吗?

有很多网友在问&#xff1a;TPlink路由器端口映射怎么设置&#xff1f;因为不懂端口映射的原理&#xff0c;所以无从下手&#xff0c;下面小编就给大家分享TPlink云路由器界面端口映射设置方法&#xff0c;帮助大家快速入门TP路由器端口映射设置方法。 1.登录路由器管理界面&a…

【2023unity游戏制作-mango的冒险】-7.玩法实现

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…

LeetCode257. 二叉树的所有路径

257. 二叉树的所有路径 文章目录 257. 二叉树的所有路径一、题目二、题解方法一&#xff1a;深度优先搜索递归方法二&#xff1a;迭代 一、题目 给你一个二叉树的根节点 root &#xff0c;按 任意顺序 &#xff0c;返回所有从根节点到叶子节点的路径。 叶子节点 是指没有子节点…

xshell连接Windows中通过wsl安装的linux子系统-Ubuntu 22.04

xshell连接Windows中通过wsl安装的linux子系统-Ubuntu 22.04 一、安装linux子系统 1.1、 启动或关闭Windows功能-适用于Linux的Windows子系统 1.2 WSL 官方文档 使用 WSL 在 Windows 上安装 Linux //1-安装 WSL 命令 wsl --install//2-检查正在运行的 WSL 版本&#xff1a;…

计算机视觉:卷积层的参数量是多少?

本文重点 卷积核的参数量是卷积神经网络中一个重要的概念,它决定了网络的复杂度和计算量。在深度学习中,卷积操作是一种常用的操作,用于提取图像、语音等数据中的特征。卷积神经网络的优势点在于稀疏连接和权值共享,这使得卷积核的参数相较于传统的神经网络要少很多。 举例…

记一次Apache HTTP Client问题排查

现象 通过日志查看&#xff0c;存在两种异常情况。第一种&#xff1a;开始的时候HTTP请求会报超时异常。 762663363 [2023-07-21 06:04:25] [executor-64] ERROR - com.xxl.CucmTool - CucmTool|sendRisPortSoap error,url:https://xxxxxx/realtimeservice/services/RisPort o…

日常环境配置

pip install 使用代理 例&#xff1a;代理端口&#xff1a;10808 pip install akshare --proxyhttp://127.0.0.1:10808———— conda 虚拟环境安装pip包 查看虚拟环境地址 conda info --env #查看虚拟环境地址使用–taget 安装pip 包 pip install akshare --target &q…

QT学习之旅 - 一个QT的基本项目

文章目录 定时器(时间)位置信息QTableWidget用cellwidget添加控件隐藏QTableWidget的滚动条自动调整适应大小 UDPUDP ClientUDP ServerUDP udpSocket.readDatagram重要参数使用多线程udp 自定义信号和槽UDP服务端接收数据(全局变量) QWT设置标题数轴相关设置坐标轴范围设置坐标…

【LeetCode 75】第十六题(1004)最大连续1的个数

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码运行结果&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 给一个只有0和1的数组&#xff0c;可以将K个0变成1&#xff0c;问最大能得到的全是1的子数组的长度是多少。 这算是很经典的滑动…

小研究 - 主动式微服务细粒度弹性缩放算法研究(二)

微服务架构已成为云数据中心的基本服务架构。但目前关于微服务系统弹性缩放的研究大多是基于服务或实例级别的水平缩放&#xff0c;忽略了能够充分利用单台服务器资源的细粒度垂直缩放&#xff0c;从而导致资源浪费。为此&#xff0c;本文设计了主动式微服务细粒度弹性缩放算法…

vscode设置远程登录和免密登录

首先&#xff0c;我们去官网下载VScode 安装过程比较简单&#xff0c;大家自行安装即可&#xff0c;注意建议安装在除C盘外的其他盘中。 安装完成后&#xff0c;打开我们下载好的VScode&#xff0c;点击左侧的Extensions选项&#xff0c;搜索Remote&#xff0c;Install第一项R…

初识Linux

今天简单了解了关于操作系统的发展史&#xff0c;学习了在Linux中如何远程连接云服务器的指令&#xff0c;以及在Linux中创建多个用户的指令。 1. ssh root 服务器远程地址 作用是用来连接XShell与云服务器&#xff0c;输入该指令后会自动生成输入密码的窗口&#xff0c;如…