计算机组成原理【CO】Ch2 数据的表示和应用

文章目录

  • 大纲
    • 2.1 数制与编码
    • 2.2 运算方法和运算电路
    • 2.3 浮点数的表示和运算
  • 【※】带标志加法器
    • OF
    • SF
    • ZF
    • CF
    • 计算机怎么区分有符号数无符号数?
  • 【※】存储排列和数据类型转换
    • 数据类型大小
    • 数据类型转换
  • 进位计数制
    • 进制转换
    • 2的次幂
  • 各种码的基本特性
  • 无符号整数的表示和运算
  • 带符号整数的表示和运算
  • 码之间的转换
  • 移位运算
    • 算数移位【针对有符号数】
    • 逻辑移位【针对无符号数】
    • 循环移位
  • 乘除运算
    • 无符号整数
    • 有符号数
  • 【※】IEEE754
    • IEEE754浮点数与真值相互转化
      • 由浮点数确定真值(阶码不是全0、也不是全1) :
    • 浮点数的加减运算
  • C强制类型转换
  • 浮点数的规格化

大纲

2.1 数制与编码

  • 王道书和大学教材讲到原码、补码时,使用了数学化的语言来讲解,不用过于深究,不是重点。计组这门课在考试中只考察应用,不考数学原理。对补码的数学原理感兴趣的同学,可以研究《数论》。
  • 这个小节学起来难,但做起题来不算难。不建议反复死磕视频和王道书,可以先学一遍,然后直接做题,用“做题驱动复习”。

2.2 运算方法和运算电路

  • 本节内容较多,一天的时间可能学不完。建议大家按照“伴学营打卡表”推荐的顺序做题,学一部分,做几道题。不建议一口气全部看完再去做题,那样一定消化不了。
  • 对于没学过《数字电路》的同学,串行加法器、并行加法器的底层原理一定很难理解。不过没关系,考试不可能考太底层的电路设计。
  • 带标志位的加法器是考试重点,也是经常结合第四章考察的重点,需要认真理解。OF、SF、ZF、CF 标志位的生成和作用一定要掌握。
  • 乘法、除法的原理细节不容易理解,但考察频率较低,第一次学如果觉得难,也不建议花太多时间。只需要先建立起这个认知:在计算机硬件层面,无论是乘法还是除法,都是通过 加法、减法、移位运算 来实现的。
  • C语言中各种数据类型的存储和相互转换、数据的存储和排列,这两部分内容很重要,经常结合大题考察,需认真理解。

2.3 浮点数的表示和运算

  • 本节又是一块硬骨头,没什么好说的,学吧。第一次学难免让人怀疑人生,保持平常心尽力去学尽力去做题就好。第一次学习不建议死磕细节,得配合做题来体会这个部分怎么考,用“做题驱动复习”。
  • 但很多同学的反馈是:“第一次学感觉很复杂,但第二轮回来复习感觉也没那么难”。原因是,本节内容虽难,但在经过做题训练之后,大家都会更清晰的认识到 “哪些地方是考试重点”、““哪些地方应该是我重点关注的”。

【※】带标志加法器

OF

  • 有符号数的加减运算是否发生了溢出。
  • OF=1时,说明发生了溢出
  • OF=最高位产生的进位 ⊕ 次高位产生的进位
  • OF位对无符号数的加减法无意义

SF

  • 有符号数加减运算结果的正负性。
  • SF=0表示运算结果为正数,SF=1表示运算结果为负数
  • SF = 最高位的本位和(也是结果的最高位)
  • SF位对无符号数的加减法无意义

ZF

  • 表示运算结果是否为0。
  • ZF=1表示运算结果为0,ZF=0表示运算结果非0
  • 两个数的运算结果为n bit,只有n bit全为0时,ZF =1
  • 对有符号、无符号都有意义

CF

  • 进位、借位标志

  • 表示无符号数的加减法是否发生了进位或借位

  • 当CF=1时,说明无符号数的加减法发生了进位或借位,即发生了溢出

  • CF=最高位产生的进位⊕sub

    • sub=1,表示减法
    • sub=0,表示加法
  • CF位对有符号数的加减法无意义

  • 有符号数的加减运算是否发生了溢出。

  • OF=1时,说明发生了溢出

  • OF=最高位产生的进位 ⊕ 次高位产生的进位

  • OF位对无符号数的加减法无意义
    在这里插入图片描述

计算机怎么区分有符号数无符号数?

  • 标志位会保存在PSW,ALU无法区分有符号数和无符号数,但由于计算机分为无符号加法和有符号加法。指令不同,执行时安排的微操作不同,从而区分有符号数和无符号数。

【※】存储排列和数据类型转换

数据类型大小

  • char:1B
  • short:2B
  • int:4B
  • float:4B
  • long:4B
  • double:8B

Tips:

  • C语言中定点整数是用补码存储的

数据类型转换

整数之间转换(带符号和无符号之间)

  • 长度相同
    • 机器数不变,解释方式改变
  • 短变长
    • 先扩展:
      • 无符号数补0
      • 有符号数补符号
    • 再解释
  • 长变短
    • 直接截断,只留下低位
    • 再解释

整数与浮点数之间的转换

  • 整数转浮点数:
    • 先转换为2进制,写出科学记数法1.xxxx,再转为浮点数,截断尾部采用0舍1入的原则
    • ⚠️可能精度丢失
  • 浮点数转整数:
    • 写出二进制小数,去掉小数部分,整数部分保留更低的位数
    • ⚠️可能溢出、精度丢失

进位计数制

进制转换

  • 二进制 <-> 八进制:每3个二进制位对应一个八进制位
  • 二进制 <-> 十六进制:每4个二进制位对应一个十六进制位
    • 【PS:整数部分前面补0,小数部分后面补0】
  • 十进制 -> 进制
    • 整数部分:除基取余法,先取得的“余”是整数的低位
    • 小数部分:乘基取整法,先取得的“整”是小数的高位

2的次幂

次幂2的次幂
-40.0625
-30.125
-20.25
-10.5
01
12
24
38
416
532
664
7128
8256
9512
101024
112048
124096
138192
1416384
1532768
1665536

各种码的基本特性

在这里插入图片描述

无符号整数的表示和运算

• 加法
• 全部位按位相加
• 减法
x − y = x + [ − y ] x-y=x+[-y] xy=x+[y]
[ − y [−y [y]是 [ y ] [y] [y]从右往左第一个1的左边全部取反
• 溢出
• 手算:判断加减法的结果是否超出无符号数合法表示范围
• 机算: C F = 最高位进位 ⊕ S u b CF = 最高位进位 ⊕ Sub CF=最高位进位Sub

带符号整数的表示和运算

Tips:
• 计算机内部,所有带符号整数的加减法都要先转换为补码

计算机硬件如何做带符号数补码的加法:
• 从最低位开始,所有位按位相加(符号位参与运算),并往更高位进位

计算机硬件如何做带符号数补码的减法:
• "被减数”不变,“减数”从右往左找到第一个1,这个1左边的全部位按位取反减法变加法

有符号数:
• 加法
• 按位相加
• 减法
[ x ] 补 − [ y ] 补 = [ x ] 补 + [ − y ] 补 [x]_补 - [y]_补 = [x]_补 + [−y]_补 [x][y]=[x]+[y]
[ − y ] 补 是 [ y ] 补 [−y]_补 是 [y]_补 [y][y] 从右往左第一个1的左边全部位按位取反
• 溢出
• 手算:判断加减法的结果是否超出有符号数合法表示范围
• 机算: O F = 最高位进位 ⊕ 次高位进位 OF = 最高位进位 ⊕ 次高位进位 OF=最高位进位次高位进位

码之间的转换

在这里插入图片描述

  • [x]_移→[−x]_移:全部位按位取反,末位+1
  • 使用补码表示时,若符号位相同,则数值位越大,码值越大

[ x ] 原 → [ x ] 反 ? [x]_原→[x]_反? [x][x]
• 正数:不变
• 负数:符号位不变,数值位按位取反
[ x ] 原 ↔ [ x ] 补 ? [x]_原↔[x]_补? [x][x]
• 正数:不变
• 负数:符号位不变,从右往左找到第一个“1”,这个1左边的所有“数值位”按位取反
[ x ] 补 ↔ [ − x ] 补 ? [x]_补↔[−x]_补? [x][x]
• 从右往左找到第一个“1”,这个1左边的全部位按位取反
[ x ] 补 ↔ [ x ] 移 ? [x]_补↔[x]_移? [x][x]
• 符号位取反

如何用补码快速计算真值:
- 直接在补码前面加上负号,再计算值
○ Eg: [ 1110 ] 补 = − 2 3 + 2 2 + 2 = − 2 [1110]_补 = −2^3 + 2^2 + 2 = −2 [1110]=23+22+2=2
- 遇到一大串的1,将其看作符号位,直接化为最简,再用上述方法
○ Eg: [ 11111110 ] 补 = [ 10 ] 补 = − 2 [11111110]_补 = [10]_补 = −2 [11111110]=[10]=2

如何快速求真值的补码:
eg: − 8190 = − 8192 + 2 = [ 1110 , 0000 , 0000 , 0010 ] 补 = E 002 H −8190 = −8192 + 2 = [1110,0000,0000,0010]_补 = E002H 8190=8192+2=[1110,0000,0000,0010]=E002H

移位运算

算数移位【针对有符号数】

  • 左移1位相当于乘基数;右移1位相当于除基数,但由于位数有限,所以有时候算数移位并不能完全等效于乘除运算。
  • 是针对有符号数:符号位保持不变。
    • 正数:原码、反码、补码,无论左移还是右移都是补0
    • 负数:
      • 原码左移、右移都补0
      • 反码左移和右移都补1
      • 补码左移补0,右移补1
  • 若采用双符号位来表示数,则最高符号位永远是真正的符号位,因此在算术移位时只有高符号位保留不变,低符号位要参与移位

逻辑移位【针对无符号数】

  • 针对无符号数。符号位参与,左移、右移都补0,移出的位舍弃

循环移位

  • 不带进位位
    • 用移出的位补上空缺
  • 带进位位
    • 移出的位放到进位位,原进位位补上空缺

乘除运算

无符号整数

  • 逻辑左移代替*2
  • 溢出判断:
    • n位乘n位,若用2n位保存乘积,则不会溢出
    • n位乘n位,若用2n位保存中间结果,最后截取末尾n位作为最终的乘积,则可能溢出
      • 当且仅当2n的前n位都是0时才不会溢出

有符号数

  • 算术左移代替*2
  • 溢出判断:
    • n位乘n位,若用2n位保存乘积,则不会溢出
    • n位乘n位,若用2n位保存中间结果,最后截取末尾n位作为最终的乘积,则可能溢出
      • 当且仅当2n的前n+1位是全0或全1时才不会溢出

【※】IEEE754

在这里插入图片描述

IEEE754浮点数与真值相互转化

由浮点数确定真值(阶码不是全0、也不是全1) :

  • 划分“某浮点数”,确定数符、阶码、尾数的分布
  • 确定尾数1.M(注意补充最高的隐含位1)
  • 确定 阶码的真值 = 移码 − 偏置值 阶码的真值 = 移码-偏置值 阶码的真值=移码偏置值 (可将移码看作无符号数,用无符号数的值减去偏置值)
  • ( − 1 ) s × 1. M × 2 ( E − 偏置值 ) (-1)^s × 1.M × 2^{(E - 偏置值)} (1)s×1.M×2(E偏置值)

浮点数的加减运算

对阶

  • 目的:使两个操作数的小数点位置对齐
  • 对阶操作只把较小的阶码调整到较大的阶码【所以不会引起阶码的上溢或下溢】
  • 阶码增大,尾数右移
  • 无阶码减小的情况【因为只用小阶向大阶对齐】

尾数求和

  • 原码定点数的加减法

规格化

  • 尾数规格化为1.xxxx的形式

舍入

  • 舍入是浮点数概念,定点数无舍入
  • 浮点数舍入的情况:对阶或者右规格化
  • 舍入不一定产生误差(后几位为0时不产生误差)

溢出

  • 尾数右规,阶码上溢,发生溢出异常
  • 尾数左规,阶码下溢,当机器0处理
  • 如果双符号位为01或10时,则溢出【第一个符号是真的符号】
    • 10:正溢
    • 01:负溢
  • 尾数舍入可能引起阶码的上溢
  • 尾数溢出时,结果不一定溢出
    在这里插入图片描述

C强制类型转换

  • 无损:
    • char→int→long→double
    • float→double
  • 有损:
    • int→float【可能会损失精度,float 的尾数数值位只有1+23位】
    • float→int 【可能会溢出,也可能会损失精度,如小数转整数】

浮点数的规格化

  • 规格化:规定尾数的最高数位必须是一个有效值(1)【即,基数为2时,要求尾数: 1 / 2 ≤ ∣ M ∣ < 1 1/2≤|M|<1 1/2M<1
  • 采用规格化浮点数的目的是为了增加数据的表示精度
  • 负数补码的最高数值位是0,就是一个规定,不用纠结为什么
  • 补码表示的最高位与尾数的符号位不同时,表示规格化了
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/542489.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

牛客研究生复试刷题(1)

KY30进制转换 1.最开始没有考虑到大数问题,可以说是没考虑完全,输入类型使用的是int64_t,只ac了一半测试用例。所以在数很大找不到合适的数据类型存储时,要考虑使用string来存放。 2.使用string存放数字的时候就要考虑:字符和数字之间的转换。字符转换成数字:str[i]-0,…

软考125-上午题-【软件工程】-传统软件的测试策略

一、传统软件的测试策略 有效的软件测试实际上分为4步进行&#xff0c;即&#xff1a;单元测试、集成测试、确认测试、系统测试。 1-1、单元测试&#xff08;模块测试&#xff09; 单元测试也称为模块测试&#xff0c;在模块编写完成且无编译错误后就可以进行。 单元测试侧重…

ChatGPT-4 Turbo 今天开放啦!附如何查询GPT-4 是否为 Turbo

2024年4月12日&#xff0c;OpenAI在X上宣布GPT-4 Turbo开放了&#xff01;提高了写作、数学、逻辑推理和编码方面的能力。另外最重要的是&#xff0c;响应速度更快了&#xff01;&#xff01; ChatGPT4 Turbo 如何升级&#xff1f;解决国内无法升级GPT4 Turbo的问题&#xff0…

springboot+vue科普知识商城考试论坛交流系统网站

本系统主要是设计出新能源科普网站&#xff0c;基于B/S构架&#xff0c;后台数据库采用了Mysql&#xff0c;可以使数据的查询和存储变得更加有效&#xff0c;可以确保新能源科普网站管理的工作能够正常、高效的进行&#xff0c;从而提高工作的效率。总体的研究内容如下&#xf…

Nikon | NEF格式图片批量转换为jpg格式

如何将nikon相机拍的NEF格式图片转换为jpg格式呢&#xff1f; 这里推荐一个在线转换的网址&#xff1a; https://picflow.com/convert/nef-to-jpg 添加图片后&#xff0c;可以批量选择图片&#xff0c;点击转换后即可进行下载

【Python】使用OPC UA创建数据服务器

目录 准备工作服务器设置创建或获取节点设置节点值启动服务器查看服务器客户端总结 在工业自动化和物联网&#xff08;IoT&#xff09;领域&#xff0c;OPC UA&#xff08;开放平台通信统一架构&#xff09;已经成为一种广泛采用的数据交换标准。它提供了一种安全、可靠且独立于…

Nature Geoscience | 近十年来北方森林和温带森林是全球主要的碳汇

2023年10月2日&#xff0c;法国巴黎萨克雷大学、波尔多大学与丹麦哥本哈根大学等多个单位的科研小组在国际知名学术期刊《Nature Geoscience》发表了一项题为“Global Increase in Biomass Carbon Stock Dominated by Growth of Northern Young Forests over Past Decade”的文…

论文笔记:NEFTune: Noisy Embeddings Improve Instruction Finetuning

iclr 2024 reviewer 评分 5666 1 论文思路 论文的原理很简单&#xff1a;在finetune过程的词向量中引入一些均匀分布的噪声即可明显地提升模型的表现 2 方法评估

动态规划-简单多状态dp问题2

文章目录 1. 买卖股票的最佳时机含冷冻期&#xff08;309&#xff09;2. 买卖股票的最佳时机含手续费&#xff08;714&#xff09;3. 买卖股票的最佳时机 III&#xff08;123&#xff09;4. 买卖股票的最佳时机 IV&#xff08;188&#xff09; 1. 买卖股票的最佳时机含冷冻期&a…

【ELK】ELK企业级日志分析系统

搜集日志&#xff1b;日志处理器&#xff1b;索引平台&#xff1b;提供视图化界面&#xff1b;客户端登录 日志收集者&#xff1a;负责监控微服务的日志&#xff0c;并记录 日志存储者&#xff1a;接收日志&#xff0c;写入 日志harbor&#xff1a;负责去连接多个日志收集者&am…

年龄与疾病c++

题目描述 某医院想统计一下某项疾病的获得与否与年龄是否有关&#xff0c;需要对以前的诊断记录进行整理&#xff0c;按照0-18岁、19-35岁、36-60岁、61以上&#xff08;含61&#xff09;四个年龄段统计的患病人数以及占总患病人数的比例。 输入 共2行&#xff0c;第一行为过…

2440栈的实现类型、b系列指令、汇编掉用c、c调用汇编、切换工作模式、初始化异常向量表、中断处理、

我要成为嵌入式高手之4月11日51ARM第六天&#xff01;&#xff01; ———————————————————————————— b指令 标签&#xff1a;表示这条指令的名称&#xff0c;可跳转至标签 b指令&#xff1a;相当于goto&#xff0c;可随意跳转 如&#xff1a;fini…

Vivado Design Suite中的增量实现和增量模式

Vivado Incremental&#xff08;增量&#xff09;是Xilinx FPGA设计工具中的一种功能&#xff0c;它允许对设计的一部分进行修改和重新编译&#xff0c;而不需要对整个设计进行重新编译。这种增量式的方法可以显著减少编译时间&#xff0c;特别是在进行小的修改或迭代开发时。 …

粒子群优化算法PSO与鹈鹕优化算法(POA)求解无人机三维路径规划(MATLAB代码)

一、无人机路径规划模型介绍 二、算法介绍 close all clear clc dbstop if all error warning (off) global model model CreateModel(); % 创建模型 FF1; [Xmin,Xmax,dim,fobj] fun_info(F);%获取函数信息 pop100;%种群大小(可以自己修改) maxgen100;%最大迭代次数(可以自己…

成功转行Python工程师,年薪30W+,经验总结都在这!

都说郎怕入错行&#xff0c;行业对职场人的影响不言而喻。我们身边有很多和自己起点差不多的人&#xff0c;读了差不多的高中&#xff0c;差不多的大学&#xff0c;但是有的人突然一飞冲天&#xff0c;大House、移民、海外置业、全球旅行成了最常见的话题&#xff0c;出入私立医…

LeetCode18: 四数之和

目录 题目&#xff1a; 题解&#xff1a; 代码&#xff1a; 题目&#xff1a; 给你一个由 n 个整数组成的数组 nums &#xff0c;和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] &#xff08;若两个四元组元…

【C++】STL学习之vector的使用

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 文章目录 前言一、默认成员函数1.1 默认构造1.2 拷贝构造1.3 析构函数1.4 赋值重载 二、迭…

【STK】手把手教你利用STK进行导弹和反导仿真04 - STK/MMT模块04 导弹飞行工具应用案例

【STK】手把手教你利用STK进行导弹和反导仿真04 - STK/MMT模块04 导弹飞行工具应用案例 这个案例将把范围轮廓导出到STK,以此来分析如何放置发射点和落点位置,然后使用它们来定义MFT中的飞行导弹。最后将生成的轨迹导出到STK进行显示和分析。 (1)第一步启动STK并创建新场景。…

LeetCode-705. 设计哈希集合【设计 数组 哈希表 链表 哈希函数】

LeetCode-705. 设计哈希集合【设计 数组 哈希表 链表 哈希函数】 题目描述&#xff1a;解题思路一&#xff1a;超大数组解题思路二&#xff1a;拉链法解题思路三&#xff1a;定长拉链数组 题目描述&#xff1a; 不使用任何内建的哈希表库设计一个哈希集合&#xff08;HashSet&…

算法设计与分析实验报告c++实现(最近点对问题、循环赛日程安排问题、排序问题、棋盘覆盖问题)

一、实验目的 1&#xff0e;加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握&#xff1b; 2&#xff0e;提高学生利用课堂所学知识解决实际问题的能力&#xff1b; 3&#xff0e;提高学生综合应用所学知识解决实际问题的能力。 二、实验任务 1、 最…