AIGC专栏10——EasyAnimate 一个新的类SORA文生视频模型 轻松文生视频

AIGC专栏10——EasyAnimate 一个新的类SORA文生视频模型 📺轻松文生视频

  • 学习前言
  • 源码下载地址
  • 技术原理储备(DIT/Lora/Motion Module)
    • 什么是Diffusion Transformer (DiT)
    • Lora
    • Motion Module
  • EasyAnimate简介
  • EasyAnimate原理界面展示
  • 快速启动
    • 云使用: AliyunDSW/Docker
    • 本地安装: 环境检查/下载/安装
  • 如何使用
    • 生成
      • 运行python文件
      • 通过ui界面
    • 模型训练
      • 训练视频生成模型
        • i、基于webvid数据集
        • ii、基于自建数据集
      • 训练基础文生图模型
        • i、基于diffusers格式
        • ii、基于自建数据集
      • 训练Lora模型
        • i、基于diffusers格式
        • ii、基于自建数据集
  • 算法细节

学习前言

在过年期间,OpenAI放出了SORA文生视频的预览效果,一瞬间各大媒体争相报道,又引爆了一次科技圈,可惜的是,SORA依然没选择开源。

在这个契机下,本来我也对文生视频的工作非常感兴趣,所以也研究了一些与SORA相关的技术,虽然我们没有像OpenAI那么大的算力,但做一些基础研究还是足够的。

最近我参与了一个EasyAnimate的项目,可以根据文本生成视频,并且借鉴了Animatediff的IDEA,将MotionModule网格化后引入到DIT中,借助DIT的强大生成能力,生成视频效果也还不错,并且由于基于一个可插入结构,EasyAnimate有良好的拓展性,近期也开源了出来。
在这里插入图片描述

源码下载地址

https://github.com/aigc-apps/EasyAnimate

感谢大家的关注。

技术原理储备(DIT/Lora/Motion Module)

什么是Diffusion Transformer (DiT)

DiT基于扩散模型,所以不免包含不断去噪的过程,如果是图生图的话,还有不断加噪的过程,此时离不开DDPM那张老图,如下:
在这里插入图片描述
DiT相比于DDPM,使用了更快的采样器,也使用了更大的分辨率,与Stable Diffusion一样使用了隐空间的扩散,但可能更偏研究性质一些,没有使用非常大的数据集进行预训练,只使用了imagenet进行预训练。

与Stable Diffusion不同的是,DiT的网络结构完全由Transformer组成,没有Unet中大量的上下采样,结构更为简单清晰。

在EasyAnimate中,我们将Motion Module网格化后引入到DIT中,借助DIT的强大生成能力,生成视频效果也还不错。

Lora

由《LoRA: Low-Rank Adaptation of Large Language Models》 提出的一种基于低秩矩阵的对大参数模型进行少量参数微调训练的方法,广泛引用在各种大模型的下游使用中。

由于我们是基于一个可插入的结构设计了EasyAnimate,所以EasyAnimate有良好的拓展性,我们可以对文生图模型训练Lora后应用到文生视频模型中。

Motion Module

AnimateDiff是一个可以对文生图模型进行动画处理的实用框架,其内部设计的Motion Module无需进行特定模型调整,即可一次性为大多数现有的个性化文本转图像模型提供动画化能力。

EasyAnimate参考AnimateDiff使用Motion Module保证动画的连续性,同时作为一个可插入的结构,Motion Module有良好的拓展性

EasyAnimate简介

EasyAnimate是一个基于transformer结构的pipeline,可用于生成AI动画、训练Diffusion Transformer的基线模型与Lora模型,我们支持从已经训练好的EasyAnimate模型直接进行预测,生成不同分辨率,6秒左右、fps12的视频(40 ~ 80帧, 未来会支持更长的视频),也支持用户训练自己的基线模型与Lora模型,进行一定的风格变换。

这些是pipeline的生成结果,从生成结果来看,它的生成效果还是非常不错的,Resolution 的顺序是width、height、frames:

首先是使用原始的pixart checkpoint进行预测。

Base ModelsSamplerSeedResolution (h x w x f)PromptGenerationResultDownload
PixArtDPM++43512x512x80A soaring drone footage captures the majestic beauty of a coastal cliff, its red and yellow stratified rock faces rich in color and against the vibrant turquoise of the sea. Seabirds can be seen taking flight around the cliff’s precipices.00000001Download GIF
PixArtDPM++43448x640x80The video captures the majestic beauty of a waterfall cascading down a cliff into a serene lake. The waterfall, with its powerful flow, is the central focus of the video. The surrounding landscape is lush and green, with trees and foliage adding to the natural beauty of the scene.00000001Download GIF
PixArtDPM++43704x384x80A vibrant scene of a snowy mountain landscape. The sky is filled with a multitude of colorful hot air balloons, each floating at different heights, creating a dynamic and lively atmosphere. The balloons are scattered across the sky, some closer to the viewer, others further away, adding depth to the scene.00000001Download GIF
PixArtDPM++43448x640x64The vibrant beauty of a sunflower field. The sunflowers, with their bright yellow petals and dark brown centers, are in full bloom, creating a stunning contrast against the green leaves and stems. The sunflowers are arranged in neat rows, creating a sense of order and symmetry.00000001Download GIF
PixArtDPM++43384x704x48A tranquil Vermont autumn, with leaves in vibrant colors of orange and red fluttering down a mountain stream.00000001Download GIF
PixArtDPM++43704x384x48A vibrant underwater scene. A group of blue fish, with yellow fins, are swimming around a coral reef. The coral reef is a mix of brown and green, providing a natural habitat for the fish. The water is a deep blue, indicating a depth of around 30 feet. The fish are swimming in a circular pattern around the coral reef, indicating a sense of motion and activity. The overall scene is a beautiful representation of marine life.00000001Download GIF
PixArtDPM++43576x448x48Pacific coast, carmel by the blue sea ocean and peaceful waves00000001Download GIF
PixArtDPM++43576x448x80A snowy forest landscape with a dirt road running through it. The road is flanked by trees covered in snow, and the ground is also covered in snow. The sun is shining, creating a bright and serene atmosphere. The road appears to be empty, and there are no people or animals visible in the video. The style of the video is a natural landscape shot, with a focus on the beauty of the snowy forest and the peacefulness of the road.00000001Download GIF
PixArtDPM++43640x448x64The dynamic movement of tall, wispy grasses swaying in the wind. The sky above is filled with clouds, creating a dramatic backdrop. The sunlight pierces through the clouds, casting a warm glow on the scene. The grasses are a mix of green and brown, indicating a change in seasons. The overall style of the video is naturalistic, capturing the beauty of the landscape in a realistic manner. The focus is on the grasses and their movement, with the sky serving as a secondary element. The video does not contain any human or animal elements.00000001Download GIF
PixArtDPM++43704x384x80A serene night scene in a forested area. The first frame shows a tranquil lake reflecting the star-filled sky above. The second frame reveals a beautiful sunset, casting a warm glow over the landscape. The third frame showcases the night sky, filled with stars and a vibrant Milky Way galaxy. The video is a time-lapse, capturing the transition from day to night, with the lake and forest serving as a constant backdrop. The style of the video is naturalistic, emphasizing the beauty of the night sky and the peacefulness of the forest.00000001Download GIF
PixArtDPM++43640x448x80Sunset over the sea.00000001Download GIF

使用人像checkpoint进行预测。

Base ModelsSamplerSeedResolution (h x w x f)PromptGenerationResultDownload
PortraitEuler A43448x576x801girl, 3d, black hair, brown eyes, earrings, grey background, jewelry, lips, long hair, looking at viewer, photo \(medium\), realistic, red lips, solo00000001Download GIF
PortraitEuler A43448x576x801girl, bare shoulders, blurry, brown eyes, dirty, dirty face, freckles, lips, long hair, looking at viewer, realistic, sleeveless, solo, upper body00000001Download GIF
PortraitEuler A43512x512x641girl, black hair, brown eyes, earrings, grey background, jewelry, lips, looking at viewer, mole, mole under eye, neck tattoo, nose, ponytail, realistic, shirt, simple background, solo, tattoo00000001Download GIF
PortraitEuler A43576x448x641girl, black hair, lips, looking at viewer, mole, mole under eye, mole under mouth, realistic, solo00000001Download GIF

使用人像Lora进行预测。

Base ModelsSamplerSeedResolution (h x w x f)PromptGenerationResultDownload
Pixart + LoraEuler A43512x512x641girl, 3d, black hair, brown eyes, earrings, grey background, jewelry, lips, long hair, looking at viewer, photo \(medium\), realistic, red lips, solo00000001Download GIF
Pixart + LoraEuler A43512x512x641girl, bare shoulders, blurry, brown eyes, dirty, dirty face, freckles, lips, long hair, looking at viewer, mole, mole on breast, mole on neck, mole under eye, mole under mouth, realistic, sleeveless, solo, upper body00000001Download GIF
Pixart + LoraEuler A43512x512x641girl, black hair, lips, looking at viewer, mole, mole under eye, mole under mouth, realistic, solo00000001Download GIF
Pixart + LoraEuler A43512x512x801girl, bare shoulders, blurry, blurry background, blurry foreground, bokeh, brown eyes, christmas tree, closed mouth, collarbone, depth of field, earrings, jewelry, lips, long hair, looking at viewer, photo \(medium\), realistic, smile, solo00000001Download GIF

可以看出,EasyAnimate具有良好的可拓展性,无论是训练Checkpoint还是Lora都可以应用到模型当中,另外,我们设计了分桶策略与自适应视频裁剪,模型既可以预测512x512的视频,也可以预测如384x768的视频。

EasyAnimate原理界面展示

参考Animatediff,我们为EasyAnimate也提供了对应的界面,在界面上,我们可以选择基础模型、motion module版本、基础checkpoint和lora模型。

在填入prompt和neg prompt后,就可以在下面点击generate进行生成了。
在这里插入图片描述

快速启动

云使用: AliyunDSW/Docker

a. 通过阿里云 DSW
我们暂时还没有快速启动资源,等配置完成后再做更新。

b. 通过docker
使用docker的情况下,请保证机器中已经正确安装显卡驱动与CUDA环境,然后以此执行以下命令:

# 拉取镜像
docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:easyanimate

# 进入镜像
docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:easyanimate

# clone 代码
git clone https://github.com/aigc-apps/EasyAnimate.git

# 进入EasyAnimate文件夹
cd EasyAnimate

# 下载权重
mkdir models/Diffusion_Transformer
mkdir models/Motion_Module
mkdir models/Personalized_Model

wget https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/Motion_Module/easyanimate_v1_mm.safetensors -O models/Motion_Module/easyanimate_v1_mm.safetensors
wget https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/Personalized_Model/easyanimate_portrait.safetensors -O models/Personalized_Model/easyanimate_portrait.safetensors
wget https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/Personalized_Model/easyanimate_portrait_lora.safetensors -O models/Personalized_Model/easyanimate_portrait_lora.safetensors
wget https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/Diffusion_Transformer/PixArt-XL-2-512x512.tar -O models/Diffusion_Transformer/PixArt-XL-2-512x512.tar

cd models/Diffusion_Transformer/
tar -xvf PixArt-XL-2-512x512.tar
cd ../../

本地安装: 环境检查/下载/安装

我们已验证EasyAnimate可在以下环境中执行:

Linux 的详细信息:

操作系统 Ubuntu 20.04, CentOS
python: python3.10 & python3.11
pytorch: torch2.2.0
CUDA: 11.8
CUDNN: 8+
GPU: Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G

我们需要大约 60GB 的可用磁盘空间,请检查!

b. 权重放置
我们最好将权重按照指定路径进行放置:

📦 models/
├── 📂 Diffusion_Transformer/
│   └── 📂 PixArt-XL-2-512x512/
├── 📂 Motion_Module/
│   └── 📄 easyanimate_v1_mm.safetensors
├── 📂 Motion_Module/
│   ├── 📄 easyanimate_portrait.safetensors
│   └── 📄 easyanimate_portrait_lora.safetensors

如何使用

生成

运行python文件

  • 步骤1:下载对应权重放入models文件夹。
  • 步骤2:在predict_t2v.py文件中修改prompt、neg_prompt、guidance_scale和seed。
  • 步骤3:运行predict_t2v.py文件,等待生成结果,结果保存在samples/easyanimate-videos文件夹中。
  • 步骤4:如果想结合自己训练的其他backbone与Lora,则看情况修改predict_t2v.py中的predict_t2v.py和lora_path。

通过ui界面

  • 步骤1:下载对应权重放入models文件夹。
  • 步骤2:运行app.py文件,进入gradio页面。
  • 步骤3:根据页面选择生成模型,填入prompt、neg_prompt、guidance_scale和seed等,点击生成,等待生成结果,结果保存在sample文件夹中。

模型训练

训练视频生成模型

i、基于webvid数据集

如果使用webvid数据集进行训练,则需要首先下载webvid的数据集。

您需要以这种格式排列webvid数据集。

📦 project/
├── 📂 datasets/
│   ├── 📂 webvid/
│       ├── 📂 videos/
│       │   ├── 📄 00000001.mp4
│       │   ├── 📄 00000002.mp4
│       │   └── 📄 .....
│       └── 📄 csv_of_webvid.csv

然后,进入scripts/train_t2v.sh进行设置。

export DATASET_NAME="datasets/webvid/videos/"
export DATASET_META_NAME="datasets/webvid/csv_of_webvid.csv"

...

train_data_format="webvid"

最后运行scripts/train_t2v.sh。

sh scripts/train_t2v.sh
ii、基于自建数据集

如果使用内部数据集进行训练,则需要首先格式化数据集。

您需要以这种格式排列数据集。

📦 project/
├── 📂 datasets/
│   ├── 📂 internal_datasets/
│       ├── 📂 videos/
│       │   ├── 📄 00000001.mp4
│       │   ├── 📄 00000002.mp4
│       │   └── 📄 .....
│       └── 📄 json_of_internal_datasets.json

json_of_internal_datasets.json是一个标准的json文件,如下所示:

[
    {
      "file_path": "videos/00000001.mp4",
      "text": "A group of young men in suits and sunglasses are walking down a city street.",
      "type": "video"
    },
    {
      "file_path": "videos/00000002.mp4",
      "text": "A notepad with a drawing of a woman on it.",
      "type": "video"
    }
    .....
]

json中的file_path需要设置为相对路径。

然后,进入scripts/train_t2v.sh进行设置。

export DATASET_NAME="datasets/internal_datasets/"
export DATASET_META_NAME="datasets/internal_datasets/json_of_internal_datasets.json"

...

train_data_format="normal"

最后运行scripts/train_t2v.sh。

sh scripts/train_t2v.sh

训练基础文生图模型

i、基于diffusers格式

数据集的格式可以设置为diffusers格式。

📦 project/
├── 📂 datasets/
│   ├── 📂 diffusers_datasets/
│       ├── 📂 train/
│       │   ├── 📄 00000001.jpg
│       │   ├── 📄 00000002.jpg
│       │   └── 📄 .....
│       └── 📄 metadata.jsonl

然后,进入scripts/train_t2i.sh进行设置。

export DATASET_NAME="datasets/diffusers_datasets/"

...

train_data_format="diffusers"

最后运行scripts/train_t2i.sh。

sh scripts/train_t2i.sh
ii、基于自建数据集

如果使用自建数据集进行训练,则需要首先格式化数据集。

您需要以这种格式排列数据集。

📦 project/
├── 📂 datasets/
│   ├── 📂 internal_datasets/
│       ├── 📂 train/
│       │   ├── 📄 00000001.jpg
│       │   ├── 📄 00000002.jpg
│       │   └── 📄 .....
│       └── 📄 json_of_internal_datasets.json

json_of_internal_datasets.json是一个标准的json文件,如下所示:

[
    {
      "file_path": "train/00000001.jpg",
      "text": "A group of young men in suits and sunglasses are walking down a city street.",
      "type": "image"
    },
    {
      "file_path": "train/00000002.jpg",
      "text": "A notepad with a drawing of a woman on it.",
      "type": "image"
    }
    .....
]

json中的file_path需要设置为相对路径。

然后,进入scripts/train_t2i.sh进行设置。

export DATASET_NAME="datasets/internal_datasets/"
export DATASET_META_NAME="datasets/internal_datasets/json_of_internal_datasets.json"

...

train_data_format="normal"

最后运行scripts/train_t2i.sh。

sh scripts/train_t2i.sh

训练Lora模型

i、基于diffusers格式

数据集的格式可以设置为diffusers格式。

📦 project/
├── 📂 datasets/
│   ├── 📂 diffusers_datasets/
│       ├── 📂 train/
│       │   ├── 📄 00000001.jpg
│       │   ├── 📄 00000002.jpg
│       │   └── 📄 .....
│       └── 📄 metadata.jsonl

然后,进入scripts/train_lora.sh进行设置。

export DATASET_NAME="datasets/diffusers_datasets/"

...

train_data_format="diffusers"

最后运行scripts/train_lora.sh。

sh scripts/train_lora.sh
ii、基于自建数据集

如果使用自建数据集进行训练,则需要首先格式化数据集。

您需要以这种格式排列数据集。

📦 project/
├── 📂 datasets/
│   ├── 📂 internal_datasets/
│       ├── 📂 train/
│       │   ├── 📄 00000001.jpg
│       │   ├── 📄 00000002.jpg
│       │   └── 📄 .....
│       └── 📄 json_of_internal_datasets.json

json_of_internal_datasets.json是一个标准的json文件,如下所示:

[
    {
      "file_path": "train/00000001.jpg",
      "text": "A group of young men in suits and sunglasses are walking down a city street.",
      "type": "image"
    },
    {
      "file_path": "train/00000002.jpg",
      "text": "A notepad with a drawing of a woman on it.",
      "type": "image"
    }
    .....
]

json中的file_path需要设置为相对路径。

然后,进入scripts/train_lora.sh进行设置。

export DATASET_NAME="datasets/internal_datasets/"
export DATASET_META_NAME="datasets/internal_datasets/json_of_internal_datasets.json"

...

train_data_format="normal"

最后运行scripts/train_lora.sh。

sh scripts/train_lora.sh

算法细节

我们使用了PixArt-alpha作为基础模型,并在此基础上引入额外的运动模块(motion module)来将DiT模型从2D图像生成扩展到3D视频生成上来。其框架图如下:
请添加图片描述
其中,Motion Module 用于捕捉时序维度的帧间关系,其结构如下:
请添加图片描述
我们在时序维度上引入注意力机制来让模型学习时序信息,以进行连续视频帧的生成。同时,我们利用额外的网格计算(Grid Reshape),来扩大注意力机制的input token数目,从而更多地利用图像的空间信息以达到更好的生成效果。Motion Module 作为一个单独的模块,在推理时可以用在不同的DiT基线模型上。此外,EasyAnimate不仅支持了motion-module模块的训练,也支持了DiT基模型/LoRA模型的训练,以方便用户根据自身需要来完成自定义风格的模型训练,进而生成任意风格的视频。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/542175.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RUM 最佳实践-交互延迟的探索与发现

FID 在互联网高速发展的时代,用户体验已成为企业竞争的关键所在。网页性能作为用户体验的重要组成部分,直接影响着用户的满意度和工作效率。First Input Delay(FID)作为衡量网页性能的重要指标,越来越受到业界关注。今…

万字长文深入理解Docker镜像分层原理、容器数据卷、网络通信架构(Docker系列第2章,共3章)

镜像分层的简单直观体现 在执行docker pull时,会发现多个Pull complete 字样,就能体现分层,如果是一个文件,只会有一个Pull complete 。 docker pull redis Using default tag: latest latest: Pulling from library/redis a2ab…

数据治理专家岗位的能力模型

数据治理专家的角色要求其具备全方位的专业素养与技能,不仅要有深厚的业务理解与数据技术功底,还需展现出卓越的领导力、团队协作与沟通能力,以驱动组织内部数据治理工作的高效运行与持续优化。以下是对数据治理专家各项能力的深入解读&#…

STM32H743VIT6使用STM32CubeMX通过I2S驱动WM8978(5)

接前一篇文章:STM32H743VIT6使用STM32CubeMX通过I2S驱动WM8978(4) 本文参考以下文章及视频: STM32CbueIDE Audio播放音频 WM8978 I2S_stm32 cube配置i2s录音和播放-CSDN博客 STM32第二十二课(I2S,HAL&am…

C++学习进阶:哈希思想的进一步体现

目录 前言 1.位图 1.1.位图的实现与原理 1.2.如何使用位图处理海量数据 2.布隆过滤器 2.1.知识引入 2.2.布隆过滤器的实现 2.3.布隆过滤器的应用 3.哈希切割 前言 我们在之前对哈希表的学习,明白了哈希的本质就是一种映射!!&#xf…

安达发|APS智能优化排产软件之模具约束

在制造业中,模具是生产过程中不可或缺的重要工具。然而,由于模具的制造周期长、成本高以及生产过程中的复杂性,如何合理安排模具的使用和生产计划成为了一个关键问题。为了解决这个问题,许多企业开始采用APS(高级计划与…

主干网络篇 | YOLOv8更换主干网络之VanillaNet | 华为方舟实验室提出全新轻量级骨干架构

前言:Hello大家好,我是小哥谈。华为方舟实验室所提出的VanillaNet架构克服了固有复杂性的挑战,使其成为资源受限环境的理想选择。其易于理解和高度简化的架构为高效部署开辟了新的可能性。广泛的实验表明,VanillaNet提供的性能与著名的深度神经网络和vision transformers相…

深度剖析Java中的String类

目录 引言 String类的特性 String类的部分实现代码: 不可变性: 补充: 常量池: 不可变性的好处 创建String对象 创建String对象的常用的三种方法如下: 使用常量串构造(最常用)&#xf…

帝国cms仿《鳄鱼下载站》网站源码

仿《鳄鱼下载站》网站源码手机安卓软件网站模版 PHP网站源码 帝国cms内核 采用帝国cms7.5 环境PHPmysql 恢复数据库后如何修改密码: 双击表,进入对应的详细数据表,然后找到:www_96kaifa_com_enewsuser这个表,双击打开修改&…

SAP SD学习笔记06 - 受注的据否,受注的理由,简易变更(一括处理)

上文讲了一括处理和Block(冻结)处理。 SAP SD学习笔记05 - SD中的一括处理(集中处理),出荷和请求的冻结(替代实现承认功能)-CSDN博客 本章继续讲SAP的流程中一些常用的操作。 1,受注…

【算法】分治-快排

个人主页 : zxctscl 如有转载请先通知 题目 前言1. 75. 颜色分类1.1 分析1.2 代码 2. 912. 排序数组2.1 分析2.2 代码 3. 215. 数组中的第K个最大元素3.1 分析3.2 代码 4. LCR 159. 库存管理 III4.1 分析4.2 代码 前言 分治就是分而治之 1. 75. 颜色分类 1.1 分析…

基于java+springboot+vue实现的网上购物系统(文末源码+Lw+ppt)23-42

摘 要 随着我国经济的高速发展与人们生活水平的日益提高,人们对生活质量的追求也多种多样。尤其在人们生活节奏不断加快的当下,人们更趋向于足不出户解决生活上的问题,网上购物系统展现了其蓬勃生命力和广阔的前景。与此同时,为…

Linux【实战篇】—— NFS服务搭建与配置

目录 一、介绍 1.1什么是NFS? 1.2客户端与服务端之间的NFS如何进行数据传输? 1.3RPC和NFS的启动顺序 1.4NFS服务 系统守护进程 二、安装NFS服务端 2.1安装NFS服务 2.2 创建共享目录 2.3创建共享目录首页文件 2.4关闭防火墙 2.5启动NFS服务 2.…

Java 语言程序设计(基础篇)原书第10版 梁勇著 PDF 文字版电子书

简介 Java 语言程序设计(基础篇)原书第 10 版 是 Java 语言的经典教材,中文版分为基础篇和进阶篇,主要介绍程序设计基础、面向对象程序设计、GUI 程序设计、数据结构和算法、高级 Java 程序设计等内容。本书通过示例讲解问题求解…

抖音滑块验证码加密的盐的位置

最近更新后之前很容易找到盐的位置的方法变了,抖音特意把盐隐藏起来了 {"reply": "RJC","models": "yAd8rl","in_modal": "DTn0nD2","in_slide": "ou7H0Ngda","move": …

C++算法题 - 双指针

目录 125. 验证回文串392. 判断子序列167. 两数之和 Ⅱ - 输入有序数组11. 盛最多的水15. 三数之和 125. 验证回文串 LeetCode_link 如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后,短语正着读和反着读都一样。则可以认为该短语是一个 回文串 …

arm工作模式、arm9通用寄存器、异常向量表中irq的异常向量、cpsr中的哪几位是用来设置工作模式以及r13,r14,15别名是什么?有什么作用?

ARM 首先先介绍一下ARM公司。 ARM成立于1990年11月,前身为Acorn计算机公司 主要设计ARM系列RISC处理器内核 授权ARM内核给生产和销售半导体的合作伙伴ARM公司不生产芯片 提供基于ARM架构的开发设计技术软件工具评估版调试工具应用软件总线架构外围设备单元等等CPU中…

一起学习python——基础篇(20)

前言,之前经常从网上找一些免费的接口来测试,有点受制于人的感觉。想了想还不如直接写一个接口,这样方便自己测试。自己想返回什么格式就返回什么样子,不用担心服务报错,因为自己就可以完全掌控。然后宿舍二哥告诉我py…

spring boot集成logback到mysql 8

spring boot集成logback到mysql 8 依赖数据库准备创建log日志用户,并创建数据库执行建表sql 配置文件bugbug 1:Failed to instantiate type ch.qos.logback.classic.db.DBAppenderbug信息:解决: bug2: DBAppender cannot function…

windows SDK编程 --- 第一个程序

一、基础知识 1.Unicode 和 ANSI 在 Windows 编程中,Unicode 和 ANSI 是两种不同的字符编码方法,它们用于定义如何在计算机中表示和存储字符数据。 ANSI ANSI(American National Standards Institute)编码是一种基于单字节的字符…