LeetCode-72. 编辑距离【字符串 动态规划】

LeetCode-72. 编辑距离【字符串 动态规划】

  • 题目描述:
  • 解题思路一:动规五部曲
  • 解题思路二:动态规划【版本二】
  • 解题思路三:0

题目描述:

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1:

输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:

输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)

提示:

0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成

此题的解题思路与LeetCode-1143. 最长公共子序列【字符串 动态规划】非常一致!

解题思路一:动规五部曲

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。

  1. 确定递推公式
    在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
if (word1[i - 1] == word2[j - 1])
    不操作
if (word1[i - 1] != word2[j - 1])
    增
    删
    换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i - 1][j] + 1;

操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = “ad” ,word2 = “a”,word1删除元素’d’ 和 word2添加一个元素’d’,变成word1=“a”, word2=“ad”, 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d
   +-----+-----+             +-----+-----+-----+
   |  0  |  1  |             |  0  |  1  |  2  |
   +-----+-----+   ===>      +-----+-----+-----+
 a |  1  |  0  |           a |  1  |  0  |  1  |
   +-----+-----+             +-----+-----+-----+
 d |  2  |  1  |
   +-----+-----+

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
  1. dp数组如何初始化
    再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

  1. 确定遍历顺序
    从如下四个递推公式:

dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
在这里插入图片描述
所以在dp矩阵中一定是从左到右从上到下去遍历。

  1. 举例推导dp数组
    以示例1为例,输入:word1 = “horse”, word2 = "ros"为例,dp矩阵状态图如下:
    在这里插入图片描述
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]
        for i in range(len(word1)+1):
            dp[i][0] = i
        for j in range(len(word2)+1):
            dp[0][j] = j
        for i in range(1, len(word1)+1):
            for j in range(1, len(word2)+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
        return dp[-1][-1]

时间复杂度:O(nm)
空间复杂度:O(nm)

解题思路二:动态规划【版本二】

class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m, n = len(word1), len(word2)
        dp = [[0] * (n+1) for _ in range(m+1)]
        for i in range(m+1):
            dp[i][0] = i
        for j in range(n+1):
            dp[0][j] = j
        for i in range(1, m+1):
            for j in range(1, n+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = min(dp[i-1][j], dp[i-1][j-1], dp[i][j-1]) + 1
        return dp[-1][-1]

时间复杂度:O(nm)
空间复杂度:O(nm)

解题思路三:0


时间复杂度:O(n)
空间复杂度:O(n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/541435.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS实战开发-自定义分享

介绍 自定义分享主要是发送方将文本&#xff0c;链接&#xff0c;图片三种类型分享给三方应用,同时能够在三方应用中展示。本示例使用数据请求 实现网络资源的获取&#xff0c;使用屏幕截屏 实现屏幕的截取&#xff0c;使用文件管理 实现对文件&#xff0c;文件目录的管理&…

A Learning-Based Approach for IP Geolocation(2010年)

下载地址:Towards IP geolocation using delay and topology measurements | Proceedings of the 6th ACM SIGCOMM conference on Internet measurement 被引次数:185 Eriksson B, Barford P, Sommers J, et al. A learning-based approach for IP geolocation[C]//Passive …

Linux上的可执行文件在Windows上是不能运行的

一、概要 1、可执行文件的格式 Linux上的可执行文件是elf格式的 Windows上的可执行文件是exe格式的 Linux上的可执行文件在Windows上是不能运行的 2、程序的普通构建与静态构建 普通构建&#xff1a; 一个.c文件&#xff0c;用gcc命令编译成可执行文件(程序)&#xff0c…

打开游戏缺少dll文件怎么办,dll文件一键修复方法

在我们日常操作电脑&#xff0c;经常会遇到各种各样的问题。比如想玩一会游戏的时候&#xff0c;电脑屏幕上却赫然弹出一则令人颇为扫兴的提示&#xff1a;“打开游戏缺少dll文件”。这个问题可能会让我们感到困惑和沮丧&#xff0c;但是幸运的是&#xff0c;有很多方法可以帮助…

AI论文速读 |(图腾) TOTEM:通用时间序列分析的token化时间序列嵌入表示

题目&#xff1a;TOTEM: TOkenized Time Series EMbeddings for General Time Series Analysis 作者&#xff1a;Sabera Talukder ; Yisong Yue ; Georgia Gkioxari 机构&#xff1a;加州理工学院&#xff08;Caltech&#xff09; 网址&#xff1a;https://arxiv.org/abs/24…

Unity DOTS1.0 入门(3) System与SystemGroup 概述

System与SystemGroup 概述 System System是提供一种代码逻辑,改变组件的数据状态,从一个状态到另外一个状态System在main thread里面运行, system.Update方法每一帧执行一次(其他线程中运行的就是JobSystem的事情了&#xff09;System是通过一个System Group这个体系来决定它…

【计算机毕业设计】企业销售人员培训——后附源码

&#x1f389;**欢迎来到琛哥的技术世界&#xff01;**&#x1f389; &#x1f4d8; 博主小档案&#xff1a; 琛哥&#xff0c;一名来自世界500强的资深程序猿&#xff0c;毕业于国内知名985高校。 &#x1f527; 技术专长&#xff1a; 琛哥在深度学习任务中展现出卓越的能力&a…

《积极情绪的力量》 - 三余书屋 3ysw.net

积极情绪的力量 大家好&#xff0c;今天我们解读的这本书名为《积极情绪的力量》。在情绪的世界里&#xff0c;我们可以分为积极和消极两类&#xff0c;但让人留下深刻印象的是&#xff0c;许多人更容易体验到消极情绪&#xff0c;如抑郁、恐惧、焦虑、挫败和烦躁等。这并非令…

【JavaSE进阶】00-基础语法(13-14章) 01-面向对象 02-数组 03-常用类 04-异常处理

13 第十三章 方法覆盖和多态(Polymorphism)★★★★★ 13.1 章节目标与知识框架 13.1.1 章节目标 理解在什么情况下我们需要进行方法覆盖&#xff1f;掌握在满足什么条件的时候构成方法覆盖&#xff1f;什么是多态&#xff0c;代码怎么写&#xff1f;向上转型和向下转型都是…

谷歌推出全新AI代码辅助工具Code Assist,挑战GitHub Copilot|TodayAI

在其Cloud Next大会上&#xff0c;谷歌推出了一款名为Code Assist的AI驱动代码完成工具。该工具原名为Duet AI&#xff0c;现增强了功能并与流行的编辑器兼容。 Code Assist不仅与GitHub的Copilot Enterprise直接竞争&#xff0c;还以百万级的token上下文窗口自豪&#xff0c;…

Vue3.4 中自定义组件 v-model 双向数据绑定

父组件如下: 虽然下面userName没有使用 v-model.userName"userName"的写法,它默认与子组件中 defineModel();中不指定参数的变量对应, 只能有一个不指定名称,否则会报如下错 <template><div>{{ userName}}- {{ age}}- {{ sex }}<!-- 自定义子组件 Per…

【Linux 学习】进程优先级和命令行参数!

1. 什么是优先级? 指定进程获取某种资源&#xff08;CPU&#xff09;的先后顺序&#xff1b; Linux 中优先级数字越小&#xff0c;优先级越高&#xff1b; 1.1 优先级和权限的区别&#xff1f; 权限 &#xff1a; 能不能做 优先级&#xff1a; 已经能了&#xff0c;但是获…

网页input框自动填充问题

autocomplete 大部分查询解决办法是设置&#xff0c;autocompleteoff&#xff0c;关于autocomplete的含义&#xff0c;官网参考如下: HTML attribute: autocomplete - HTML: HyperText Markup Language | MDN 在 autocomplete 的文档中说明了 value 为 off 时&#xff0c;浏览…

【Canvas与艺术】绘制黄色三角生化危险标志

【关键点】 系统函数arcTo函数的用法及自编函数createRegTriArr的灵活运用。 【成果图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head>&…

ZooKeeper分布式服务与Kafka消息队列+ELKF整合方案

前言 ZooKeeper 是一个分布式的、开放源码的分布式应用程序协调服务&#xff0c;提供配置维护、命名服务、分布式同步、组服务等功能&#xff1b; Kafka 是一个开源的分布式流处理平台&#xff0c;它被设计用来处理实时数据流&#xff0c;包括发布和订阅消息系统、日志收集以…

napi系列学习进阶篇——NAPI生命周期

什么是NAPI的生命周期 我们都知道&#xff0c;程序的生命周期是指程序从启动&#xff0c;运行到最后的结束的整个过程。生命周期的管理自然是指控制程序的启动&#xff0c;调用以及结束的方法。 而NAPI中的生命周期又是怎样的呢&#xff1f;如下图所示&#xff1a; 从图上我们…

WordPress 图片压缩插件:Compress JPEG PNG images 使用方法

插件介绍 Compress JPEG & PNG images是一款非常好用的图片压缩插件:&#xff0c;非常值得大家安装使用&#xff1b;特别是图片类型网站。其实我们很多服务器磁盘空间是不在乎多那么几十 MB 大小的&#xff0c;但是压缩了图片能提升网站速度&#xff0c;节省宽带&#xff…

入门:多层感知器Multiple-Layer Perceiver, MLP

本文将简单介绍多层感知器&#xff08;MLP&#xff09;的基本概念、原理和应用。MLP是一种前馈人工神经网络&#xff0c;由多层节点组成&#xff0c;每层节点通过权重和偏置与下一层节点相连。MLP在许多领域都有广泛的应用&#xff0c;如分类、回归、自然语言处理等。 本文将分…

软考数据库---2.SQL语言

主要记忆&#xff1a;表、索引、视图操作语句&#xff1b;数据操作&#xff1b;通配符、转义符&#xff1b;授权&#xff1b;存储过程&#xff1b;触发器 这部分等等整理一下: “”" 1、 数据定义语言。 SQL DDL提供定义关系模式和视图、 删除关系和视图、 修改关系模式的…

基于ssm的大学生租房平台的设计与实现(java源码+文档)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的大学生租房平台。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 大学生租房平台的设计与实现的主…