代码随想录阅读笔记-回溯【组合总和II】

题目

给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用一次。

说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。

  • 示例 1:
  • 输入: candidates = [10,1,2,7,6,1,5], target = 8,
  • 所求解集为:
[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]
  • 示例 2:
  • 输入: candidates = [2,5,2,1,2], target = 5,
  • 所求解集为:
[
  [1,2,2],
  [5]
]

思路 

这道题目和上一道组合总和有如下区别:

  1. 本题candidates 中的每个数字在每个组合中只能使用一次。
  2. 本题数组candidates的元素是有重复的,而上道题是无重复元素的数组candidates

本题的难点在于区别2中:集合(数组candidates)有重复元素,但还不能有重复的组合

一些同学可能想了:我把所有组合求出来,再用set或者map去重,这么做很容易超时!

所以要在搜索的过程中就去掉重复组合。

所谓去重,其实就是使用过的元素不能重复选取。

都知道组合问题可以抽象为树形结构,那么“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上使用过,一个维度是同一树层上使用过。没有理解这两个层面上的“使用过” 是造成大家没有彻底理解去重的根本原因。

那么问题来了,我们是要同一树层上使用过,还是同一树枝上使用过呢?

回看一下题目,元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。

所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重

为了理解去重我们来举一个例子,candidates = [1, 1, 2], target = 3,(方便起见candidates已经排序了)

强调一下,树层去重的话,需要对数组排序!

选择过程树形结构如图所示:

40.组合总和II

回溯三部曲

1、递归函数参数

此题还需要加一个bool型数组used,用来记录同一树枝上的元素是否使用过。这个集合去重的重任就是used来完成的。

vector<vector<int>> result; // 存放组合集合
vector<int> path;           // 符合条件的组合
void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {

2、递归终止条件

与上题相同,终止条件为 sum > target 和 sum == target

if (sum > target) { // 这个条件其实可以省略
    return;
}
if (sum == target) {
    result.push_back(path);
    return;
}

sum > target 这个条件其实可以省略,因为在递归单层遍历的时候,会有剪枝的操作,下面会介绍到。

3、单层搜索的逻辑

前面我们提到:要去重的是“同一树层上的使用过”,如何判断同一树层上元素(相同的元素)是否使用过了呢。

如果candidates[i] == candidates[i - 1] 并且 used[i - 1] == false,就说明:前一个树枝,使用了candidates[i - 1],也就是说同一树层使用过candidates[i - 1]

此时for循环里就应该做continue的操作。

这块比较抽象,如图:

40.组合总和II1

我在图中将used的变化用橘黄色标注上,可以看出在candidates[i] == candidates[i - 1]相同的情况下:

  • used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
  • used[i - 1] == false,说明同一树层candidates[i - 1]使用过

可能有人想,为什么 used[i - 1] == false 就是同一树层呢,因为同一树层,used[i - 1] == false 才能表示,当前取的 candidates[i] 是从 candidates[i - 1] 回溯而来的。

而 used[i - 1] == true,说明是进入下一层递归,去下一个数,所以是树枝上,如图所示:

这块去重的逻辑很抽象,网上搜的题解基本没有能讲清楚的,如果大家之前思考过这个问题或者刷过这道题目,看到这里一定会感觉通透了很多!

那么单层搜索的逻辑代码如下:

for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
    // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
    // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
    // 要对同一树层使用过的元素进行跳过
    if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
        continue;
    }
    sum += candidates[i];
    path.push_back(candidates[i]);
    used[i] = true;
    backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1:这里是i+1,每个数字在每个组合中只能使用一次
    used[i] = false;
    sum -= candidates[i];
    path.pop_back();
}

注意sum + candidates[i] <= target为剪枝操作

回溯三部曲分析完了,整体C++代码如下:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {
        if (sum == target) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
            // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
            // 要对同一树层使用过的元素进行跳过
            if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
                continue;
            }
            sum += candidates[i];
            path.push_back(candidates[i]);
            used[i] = true;
            backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次
            used[i] = false;
            sum -= candidates[i];
            path.pop_back();
        }
    }

public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        vector<bool> used(candidates.size(), false);
        path.clear();
        result.clear();
        // 首先把给candidates排序,让其相同的元素都挨在一起。
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0, used);
        return result;
    }
};

  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

这里直接用startIndex来去重也是可以的, 就不用used数组了。

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum == target) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            // 要对同一树层使用过的元素进行跳过,所以条件为i>startindex,因为递归进入的一定不满足这个条件,故不会进入这个分支
            if (i > startIndex && candidates[i] == candidates[i - 1]) {
                continue;
            }
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i + 1); // 和组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次
            sum -= candidates[i];
            path.pop_back();
        }
    }

public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        path.clear();
        result.clear();
        // 首先把给candidates排序,让其相同的元素都挨在一起。
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0);
        return result;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/539433.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis入门到通关之Redis通用命令

文章目录 Redis数据结构介绍Redis 通用命令命令演示KEYSDELEXISTSEXPIRE RedisTemplate 中的通用命令 Redis数据结构介绍 Redis 是一个key-value的数据库&#xff0c;key一般是String类型&#xff0c;不过value的类型多种多样&#xff1a; 贴心小建议&#xff1a;命令不要死…

Nginx小册(博客笔记迁移)

nginx基础 1.常用命令 nginx -v #查看版本 ps -ef | grep nginx #输出linux进程、 nginx #启动nginx进程 nginx -s reload #重载配置 nginx -s stop # 停止进程 nginx -t # 检查是否有语法错误&#xff0c;以及配置文件地址2.nginx的配置文件 # 用户组的设置 windows上不生…

连锁收银系统哪个好用 国内三大连锁收银系统评比

随着数字化管理趋势下互联网技术的不断发展革新&#xff0c;互联网技术&#xff0c;以及不断升级优化传统行业渠道模式&#xff0c;线上线下结合的电子商务模式正逐渐成为企业发展的趋势。而门店管理系统也在越来越多的企业应用。但市场上连锁店管理系统品牌诸多&#xff0c;很…

浏览器工作原理与实践--HTTP/1:HTTP性能优化

谈及浏览器中的网络&#xff0c;就避不开HTTP。我们知道HTTP是浏览器中最重要且使用最多的协议&#xff0c;是浏览器和服务器之间的通信语言&#xff0c;也是互联网的基石。而随着浏览器的发展&#xff0c;HTTP为了能适应新的形式也在持续进化&#xff0c;我认为学习HTTP的最佳…

数学杂谈之四:学习数学的方法

数学杂谈之四&#xff1a;学习数学的方法 数学杂谈之一&#xff1a;数学的形态 https://blog.csdn.net/cnds123/article/details/137437208 数学杂谈之二&#xff1a;数学中的概念和理解 https://blog.csdn.net/cnds123/article/details/137500537 数学杂谈之三&#xff1a;…

zookeeper分布式应用程序协调服务

一、zookeeper基本介绍 1.1 zookeeper的概念 Zookeeper是一个开源的分布式的&#xff0c;为分布式框架提供协调服务的Apache项目。 是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件&#xff0c;提供的功能包括&#xff1a;配置维护、域名服务、…

unity在linux环境下videoplayer 无法播放问题解决路径

1、问题 一个项目需要在linux下播放视频&#xff0c;并且视频在机器上&#xff0c;也就是要使用应用外的视频文件进行播放。 视频的格式当前提供的事avi格式&#xff0c;并且使用videoplayer 在windows下播放正常。 但是发出包之后再Ubuntu环境怎么都无法播放。 2、测试环境…

K-means和逻辑回归

逻辑回归 一个事件的几率是该事件发生的概率/该事件不发生的概率&#xff1a;P/&#xff08;1-P&#xff09; 对数几率是&#xff1a;log(P/&#xff08;1-P&#xff09;) **考虑对输入x分类的模型&#xff1a;**log(P/&#xff08;1-P&#xff09;)wx 则 Pexp(wx)/(exp(w*x)…

【线段树】【区间更新】2916. 子数组不同元素数目的平方和 II

算法可以发掘本质&#xff0c;如&#xff1a; 一&#xff0c;若干师傅和徒弟互有好感&#xff0c;有好感的师徒可以结对学习。师傅和徒弟都只能参加一个对子。如何让对子最多。 二&#xff0c;有无限多1X2和2X1的骨牌&#xff0c;某个棋盘若干格子坏了&#xff0c;如何在没有坏…

Spring Boot集成Graphql快速入门Demo

1.Graphql介绍 GraphQL 是一个用于 API 的查询语言&#xff0c;是一个使用基于类型系统来执行查询的服务端运行时&#xff08;类型系统由你的数据定义&#xff09;。GraphQL 并没有和任何特定数据库或者存储引擎绑定&#xff0c;而是依靠你现有的代码和数据支撑。 优势 GraphQL…

贫穷的本质

李永乐 李永乐一个老师 李永乐&#xff0c;男&#xff0c;汉族&#xff0c;1983年出生于吉林省吉林市 [1]&#xff0c;高中数学、物理老师&#xff0c;北京大学物理与经济双学士 [5]&#xff0c;清华大学电子工程系 [5]硕士研究生。 他的解读逻辑比较清晰&#xff0c;更像是用数…

Redis从入门到精通(十五)Redis分布式缓存(三)Redis分片集群的搭建和原理分析

文章目录 前言5.4 分片集群5.4.1 搭建分片集群5.4.2 散列插槽5.4.3 集群伸缩5.4.3.1 需求分析5.4.3.2 创建新的Redis实例5.4.3.3 添加新节点到Redis集群5.4.3.4 转移插槽 5.4.4 故障转移5.4.4.1 自动故障转移5.4.4.2 手动故障转移 5.4.5 RedisTemplate 5.5 小结 前言 Redis分布…

webpack-loader的使用

引入css后执行打包命令 "build": "npx webpack --config wk.config.js"发现报错&#xff1a; webpack默认只能处理js其他的像css,图片都需要借助loader来处理 css-loader loader可以用于对模块的源代码进行转换&#xff0c;可以把css看成一个模块&…

项目管理工具——使用甘特图制定项目计划的详细步骤

甘特图是一种直观的项目管理工具&#xff0c;它有助于我们清晰地展示任务安排、时间管理和项目的进度。以下是使用甘特图制定项目计划的详细步骤&#xff1a; 1、创建项目&#xff1a;首先&#xff0c;在进度猫中创建新的项目&#xff0c;并设置项目的时间、工作日等参数。根据…

Day37|贪心算法part06:738.单调递增的数字、968. 监控二叉树、贪心总结

738. 单调递增的数字 总体思想就是从后往前遍历&#xff0c;比较第i位和第i1位的大小&#xff0c;不符合顺序char[i]减1&#xff0c;i1位填9&#xff0c;找到需要填9的最先位置&#xff0c;然后填9。 class Solution {public int monotoneIncreasingDigits(int n) {String s …

请求分发场景下的鉴权问题

说明&#xff1a;记录一次对请求分发&#xff0c;无法登录系统的问题。 场景 如下&#xff0c;在此结构下&#xff0c;如何判断该用户是已登录的用户&#xff1b; 常规操作&#xff0c;用户登录后给用户发Token&#xff0c;同时将发放的Token存入到Redis中。要求用户后续请求…

halcon domain和region总结

1.domain是什么 在halcon中&#xff0c;ROI(Region Of Interest)被称为图像的域(domain)&#xff08;参考《solution_guide_i.pdf》&#xff09;。这个术语来自数学中的定义域&#xff0c;而图像就是函数&#xff0c;本函数负责将坐标映射到像素值&#xff0c;即f(x) gray这样…

计算机网络——TCP和UDP协议

目录 前言 前篇 引言 TCP与UDP之间的区别 TCP 三次握手 为什么要三次握手而不是两次握手&#xff1f; 丢包问题与乱序问题的解决 四次挥手 为什么客户端需要等待超时时间&#xff1f; UDP协议 TCP和UDP的主要区别 前言 本博客是博主用于复习计算机网络的博客&…

性能测试-数据库优化二(SQL的优化、数据库拆表、分表分区,读写分离、redis)

数据库优化 explain select 重点&#xff1a; type类型&#xff0c;rows行数&#xff0c;extra SQL的优化 在写on语句时&#xff0c;将数据量小的表放左边&#xff0c;大表写右边where后面的条件尽可能用索引字段&#xff0c;复合索引时&#xff0c;最好按复合索引顺序写wh…

NGO-VMD+皮尔逊系数+小波阈值降噪+重构

NGO-VMD皮尔逊系数小波阈值降噪重构 NGO-VMD皮尔逊系数小波阈值降噪重构代码获取戳此处代码获取戳此处 以西储大学轴承数据为例&#xff0c;进行VMD&#xff0c;且采用NGO进行K a参数寻优 并对分解分量计算皮尔逊相关系数筛选含噪声分量&#xff0c;对其进行小波软硬阈值降噪&a…