python测试开发面试常考题:装饰器

目录

简介

应用

第一类对象

装饰器

描述器descriptor

资料获取方法


简介

Python 装饰器是一个可调用的(函数、方法或类),它获得一个函数对象 func_in 作为输入,并返回另一函数对象 func_out。它用于扩展函数、方法或类的行为。

装饰器模式通常用于扩展对象的功能。在日常生活中,这种扩展的例子有:在枪上加一个消音器,使用不同的相机镜头等等。

image

Django框架中有大量装饰器

  • 限制某些HTTP请求对视图的访问
  • 控制
  • 按单个视图控制压缩
  • 基于特定HTTP请求头控制缓存

Pyramid框架和Zope应用服务器也使用装饰器来实现各种目标。

  • 将函数注册为事件订阅者
  • 以特定权限保护一个方法
  • 实现适配器模式

应用

装饰器模式在跨领域方面大放异彩:

  • 数据验证
  • 缓存
  • 日志
  • 监控
  • 调试
  • 业务规则
  • 加密

使用修饰器模式的另一个常见例子是(Graphical User Interface,GUI)工具集。在GUI工具集中,我们希望能够将一些特性,比如边框、阴影、颜色以及滚屏,添加到组件/控件。

第一类对象

装饰器是Python中非常强大和有用的工具,它允许程序员修改函数或类的行为。装饰器允许我们封装另一个函数,以扩展被封装函数的行为,而不需要修改它。但在深入研究装饰器之前,让我们先了解一些概念,这些概念在学习装饰器时将会很有用。

在Python中,函数是第一类对象,这意味着 Python 中的函数可以作为参数使用或传递。

第一类函数的属性:

  • 函数是对象类型的实例
  • 可以将函数存储在变量
  • 可以将函数作为参数传递给其他函数
  • 可以从函数中返回函数。
  • 可以将它们存储在数据结构中,如哈希表、列表、...

例1:将函数视为对象。

def shout(text):
    return text.upper()
 
print(shout('Hello'))
 
yell = shout
 
print(yell('Hello'))

输出:

HELLO
HELLO

例2:将函数作为参数传递

def shout(text):
    return text.upper()
 
def whisper(text):
    return text.lower()
 
def greet(func):
    # storing the function in a variable
    greeting = func("""Hi, I am created by a function passed as an argument.""")
    print (greeting)
 
greet(shout)
greet(whisper)

输出:

HI, I AM CREATED BY A FUNCTION PASSED AS AN ARGUMENT.
hi, i am created by a function passed as an argument.

例3: 从函数中返回函数。

def shout(text):
    return text.upper()
 
def whisper(text):
    return text.lower()
 
def greet(func):
    # storing the function in a variable
    greeting = func("""Hi, I am created by a function passed as an argument.""")
    print (greeting)
 
greet(shout)
greet(whisper)

输出:

25

装饰器

如上所述,装饰器是用来修改函数或类的行为的。在装饰器中,函数被当作函数的参数,然后在封装函数中调用。

  • 装饰器的语法:
@gfg_decorator
def hello_decorator():
    print("Gfg")

'''Above code is equivalent to -

def hello_decorator():
    print("Gfg")
    
hello_decorator = gfg_decorator(hello_decorator)'''

gfg_decorator 是一个可调用的函数,它将在另一个可调用的函数hello_decorator函数上面添加一些代码,并返回封装函数。

  • 装饰器可以修改行为:

# defining a decorator
def hello_decorator(func):
 
    # inner1 is a Wrapper function in
    # which the argument is called
     
    # inner function can access the outer local
    # functions like in this case "func"
    def inner1():
        print("Hello, this is before function execution")
 
        # calling the actual function now
        # inside the wrapper function.
        func()
 
        print("This is after function execution")
         
    return inner1
 
 
# defining a function, to be called inside wrapper
def function_to_be_used():
    print("This is inside the function !!")
 
 
# passing 'function_to_be_used' inside the
# decorator to control its behaviour
function_to_be_used = hello_decorator(function_to_be_used)
 
 
# calling the function
function_to_be_used()

输出:

Hello, this is before function execution
This is inside the function !!
This is after function execution

让我们跳到另一个例子,在这个例子中,我们可以用装饰器轻松地找出函数的执行时间。

import time
import math
import functools
 
# decorator to calculate duration
# taken by any function.
def calculate_time(func):
     
    # added arguments inside the inner1,
    # if function takes any arguments,
    # can be added like this.
    @functools.wraps(func) # 支持内省,一般可以不用,多用于文档
    def inner1(*args, **kwargs):
 
        # storing time before function execution
        begin = time.time()
         
        func(*args, **kwargs)
 
        # storing time after function execution
        end = time.time()
        print("Total time taken in : ", func.__name__, end - begin)
 
    return inner1
 
 
 
# this can be added to any function present,
# in this case to calculate a factorial
@calculate_time
def factorial(num):
 
    # sleep 2 seconds because it takes very less time
    # so that you can see the actual difference
    time.sleep(2)
    print(math.factorial(num))
 
# calling the function.
factorial(10)

@functools.wraps装饰器使用函数functools.update_wrapper()来更新特殊属性,如__name__和__doc__,这些属性在自省中使用。

输出:

3628800
Total time taken in :  factorial 2.0061802864074707
  • 如果函数有返回或有参数传递给函数,怎么办?

在上面所有的例子中,函数都没有返回任何东西,所以没有问题,但人们可能需要返回的值。

def hello_decorator(func):
    def inner1(*args, **kwargs):
         
        print("before Execution")
         
        # getting the returned value
        returned_value = func(*args, **kwargs)
        print("after Execution")
         
        # returning the value to the original frame
        return returned_value
         
    return inner1
 
 
# adding decorator to the function
@hello_decorator
def sum_two_numbers(a, b):
    print("Inside the function")
    return a + b
 
a, b = 1, 2
 
# getting the value through return of the function
print("Sum =", sum_two_numbers(a, b))

输出:

before Execution
Inside the function
after Execution
Sum = 3

内部函数接收的参数是*args和**kwargs,这意味着可以传递任何长度的位置参数的元组或关键字参数的字典。这使得它成为通用的装饰器,可以装饰具有任何数量参数的函数。

  • 链式装饰器

链式装饰器是指用多个装饰器来装饰函数。

# code for testing decorator chaining
def decor1(func):
    def inner():
        x = func()
        return x * x
    return inner
 
def decor(func):
    def inner():
        x = func()
        return 2 * x
    return inner
 
@decor1
@decor
def num():
    return 10
 
@decor
@decor1
def num2():
    return 10
   
print(num())
print(num2())

输出

400
200

上面的例子类似于调用函数---

decor1(decor(num))
decor(decor1(num2))

一些常用的装饰器在 Python 中甚至是内建的,它们是 @classmethod, @staticmethod, 和 @property。@classmethod 和 @staticmethod 装饰器用于定义类命名空间中的方法,这些方法与该类的特定实例没有关系。@property装饰器是用来定制类属性的getters和setters的。

  • 类装饰器

在 Python 3.7 中的新的 dataclasses 模块中完成:

from decorators import debug, do_twice

@debug
@do_twice
def greet(name):
    print(f"Hello {name}")

语法的含义与函数装饰器相似。你可以通过写PlayingCard = dataclass(PlayingCard)来进行装饰。

类装饰器的一个常见用途是作为元类的一些使用情况的更简单的替代。

编写一个类装饰器与编写一个函数装饰器非常相似。唯一的区别是,装饰器将接收类而不是函数作为参数。事实上,你在上面看到的所有装饰器都可以作为类装饰器工作。

  • 带参数与不带参数的装饰器
def repeat(_func=None, *, num_times=2):
    def decorator_repeat(func):
        @functools.wraps(func)
        def wrapper_repeat(*args, **kwargs):
            for _ in range(num_times):
                value = func(*args, **kwargs)
            return value
        return wrapper_repeat

    if _func is None:
        return decorator_repeat
    else:
        return decorator_repeat(_func)

使用functools.partial也可达到类似效果。

以下是slowdown的演进版本

import functools
import time

def slow_down(_func=None, *, rate=1):
    """Sleep given amount of seconds before calling the function"""
    def decorator_slow_down(func):
        @functools.wraps(func)
        def wrapper_slow_down(*args, **kwargs):
            time.sleep(rate)
            return func(*args, **kwargs)
        return wrapper_slow_down

    if _func is None:
        return decorator_slow_down
    else:
        return decorator_slow_down(_func)
  • 有状态的装饰器
import functools

def count_calls(func):
    @functools.wraps(func)
    def wrapper_count_calls(*args, **kwargs):
        wrapper_count_calls.num_calls += 1
        print(f"Call {wrapper_count_calls.num_calls} of {func.__name__!r}")
        return func(*args, **kwargs)
    wrapper_count_calls.num_calls = 0
    return wrapper_count_calls

@count_calls
def say_whee():
    print("Whee!")

对函数的调用次数--存储在包装函数的函数属性 .num_calls 中。下面是使用它的效果:

>>> say_whee()
Call 1 of 'say_whee'
Whee!

>>> say_whee()
Call 2 of 'say_whee'
Whee!

>>> say_whee.num_calls
2

维护状态的典型方法是使用类装饰器。

import functools

class CountCalls:
    def __init__(self, func):
        functools.update_wrapper(self, func)
        self.func = func
        self.num_calls = 0

    def __call__(self, *args, **kwargs):
        self.num_calls += 1
        print(f"Call {self.num_calls} of {self.func.__name__!r}")
        return self.func(*args, **kwargs)

@CountCalls
def say_whee():
    print("Whee!")
  • 单例模式

单例是只有一个实例的类。比如 None、True 和 False,可以使用 is 关键字来比较 None。

import functools

def singleton(cls):
    """Make a class a Singleton class (only one instance)"""
    @functools.wraps(cls)
    def wrapper_singleton(*args, **kwargs):
        if not wrapper_singleton.instance:
            wrapper_singleton.instance = cls(*args, **kwargs)
        return wrapper_singleton.instance
    wrapper_singleton.instance = None
    return wrapper_singleton

@singleton
class TheOne:
    pass

如你所见,这个类装饰器与我们的函数装饰器遵循相同的模板。唯一的区别是,我们使用 cls 而不是 func 作为参数名,以表明它是类装饰器。

让我们看看它是否有效:

>>> first_one = TheOne()
>>> another_one = TheOne()

>>> id(first_one)
140094218762280

>>> id(another_one)
140094218762280

>>> first_one is another_one
True

注意:在Python中,单例其实并不像其他语言那样经常使用,通常用全局变量来实现更好。

  • 缓存返回值

装饰器可以为缓存和备忘提供一个很好的机制。作为一个例子,让我们看一下斐波那契数列的递归定义:

import functools
from decorators import count_calls

def cache(func):
    """Keep a cache of previous function calls"""
    @functools.wraps(func)
    def wrapper_cache(*args, **kwargs):
        cache_key = args + tuple(kwargs.items())
        if cache_key not in wrapper_cache.cache:
            wrapper_cache.cache[cache_key] = func(*args, **kwargs)
        return wrapper_cache.cache[cache_key]
    wrapper_cache.cache = dict()
    return wrapper_cache

@cache
@count_calls
def fibonacci(num):
    if num < 2:
        return num
    return fibonacci(num - 1) + fibonacci(num - 2)

在标准库中,最近使用最少的缓存(LRU)可作为 @functools.lru_cache。

这个装饰器比你上面看到的那个有更多的功能。你应该使用@functools.lru_cache而不是写你自己的缓存装饰器:

import functools

@functools.lru_cache(maxsize=4)
def fibonacci(num):
    print(f"Calculating fibonacci({num})")
    if num < 2:
        return num
    return fibonacci(num - 1) + fibonacci(num - 2)

maxsize参数指定了多少个最近的调用被缓存。默认值是128,但你可以指定maxsize=None来缓存所有函数调用。然而,要注意的是,如果你要缓存许多大的对象,这可能会导致内存问题。

描述器descriptor

任何定义了 __get__(), __set__() 或 __delete__() 方法的对象。当类属性为描述器时,它的特殊绑定行为就会在属性查找时被触发。通常情况下,使用 a.b 来获取、设置或删除属性时会在 a 的类字典中查找名称为 b 的对象,但如果 b 是描述器,则会调用对应的描述器方法。理解描述器的概念是更深层次理解 Python 的关键,因为这是许多重要特性的基础,包括函数、方法、属性、类方法、静态方法以及对超类的引用等等。

有关描述符的方法的详情可参看 实现描述器。

class property(fget=None, fset=None, fdel=None, doc=None)

fget 是获取属性值的函数。 fset 是用于设置属性值的函数。 fdel 是用于删除属性值的函数。并且 doc 为属性对象创建文档字符串。

class C():
    def __init__(self):
        self._x = None

    def getx(self):
        return self._x

    def setx(self, value):
        self._x = value

    def delx(self):
        del self._x

    x = property(getx, setx, delx, "I'm the 'x' property.")
    
demo = C()
demo.x = 5
print(demo.x)
print(demo.getx())

执行结果

5
5

更快捷的方式:

class C():
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x
    
demo = C()
demo.x = 5
print(demo.x)

@property 装饰器会将 x() 方法转化为同名的只读属性的 "getter",并将 x的文档字符串设置为 "I'm the 'x' property."

执行结果

5

资料获取方法

【留言777】

各位想获取源码等教程资料的朋友请点赞 + 评论 + 收藏,三连!

三连之后我会在评论区挨个私信发给你们~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/53801.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Hudi Flink SQL源码调试学习(1)

前言 本着学习hudi-flink源码的目的&#xff0c;利用之前总结的文章Hudi Flink SQL代码示例及本地调试中的代码进行调试,记录调试学习过程中主要的步骤及对应源码片段。 版本 Flink 1.15.4Hudi 0.13.0 目标 在文章Hudi Flink SQL代码示例及本地调试中提到&#xff1a;我们…

【LLM系列之指令微调】长话短说大模型指令微调的“Prompt”

1 指令微调数据集形式“花样”太多 大家有没有分析过 prompt对模型训练或者推理的影响&#xff1f;之前推理的时候&#xff0c;发现不加训练的时候prompt&#xff0c;直接输入模型性能会变差的&#xff0c;这个倒是可以理解。假如不加prompt直接训练&#xff0c;是不是测试的时…

基于高通QCC5171的对讲机音频数据传输系统设计

一 研发资料准备 二 设计方法 蓝牙连接与配对&#xff1a;使用QCC5171的蓝牙功能&#xff0c;实现设备之间的蓝牙连接和配对。确保设备能够相互识别并建立起稳定的蓝牙连接。 音频采集与处理&#xff1a;将麦克风采集到的音频数据通过QCC5171的ADC&#xff08;模数转换器&…

linux系统编程重点复习--线程同步

目录 复习目标&#xff1a; 1 互斥锁 1.1互斥锁的使用步骤 1.2 练习 1.3 死锁 2 读写锁 3 条件变量 4 信号量 复习目标&#xff1a; 熟练掌握互斥量的使用说出什么叫死锁以及解决方案熟练掌握读写锁的使用熟练掌握条件变量的使用理解条件变量实现的生产消费者模型理解…

python简单的病毒编程代码,如何用python写一个病毒

大家好&#xff0c;本文将围绕python简单的病毒编程代码展开说明&#xff0c;如何用python做恶搞病毒是一个很多人都想弄明白的事情&#xff0c;想搞清楚如何用python写一个病毒需要先了解以下几个事情。 1、Python能不能写病毒 国家计算机病毒应急处理中心通过对互联网的监测…

算法leetcode|64. 最小路径和(rust重拳出击)

文章目录 64. 最小路径和&#xff1a;样例 1&#xff1a;样例 2&#xff1a;提示&#xff1a; 分析&#xff1a;题解&#xff1a;rust&#xff1a;go&#xff1a;c&#xff1a;python&#xff1a;java&#xff1a; 64. 最小路径和&#xff1a; 给定一个包含非负整数的 m x n 网…

windows 安装 mongodb 数据库

软件下载 访问官方的下载地址&#xff1a; https://www.mongodb.com/try/download/community &#xff0c;然后选择对应的版本进行下载 下载好了之后双击进行安装 软件安装 1、点击 next 点击下一步 2、勾选接受协议&#xff0c;点击 next 3、第三页有两个选项&#x…

redisson分布式锁学习

什么是分布式锁? 当有多个线程并发访问同一共享数据时,如果多个线程同时都去修改这个共享数据,且修改操作不是原子操作,就很有可能出现线程安全问题&#xff0c;而产生线程安全问题的根本原因是缺乏对共享数据访问的同步和互斥。 为了解决这个问题&#xff0c;通常我们的做法…

P2P网络NAT穿透原理(打洞方案)

1.关于NAT NAT技术&#xff08;Network Address Translation&#xff0c;网络地址转换&#xff09;是一种把内部网络&#xff08;简称为内网&#xff09;私有IP地址转换为外部网络&#xff08;简称为外网&#xff09;公共IP地址的技术&#xff0c;它使得一定范围内的多台主机只…

SpringBoot超级详解

1.父工程的父工程 在父工程的父工程中的核心依赖&#xff0c;专门用来版本管理的 版本管理。 2.父工程 资源过滤问题&#xff0c;都帮解决了&#xff0c;什么配置文件&#xff0c;都已经配置好了&#xff0c;资源过滤问题是帮助&#xff0c;过滤解决让静态资源文件能够过滤到…

别再分库分表了,来试试它吧

什么是NewSQL传统SQL的问题 升级服务器硬件数据分片NoSQL 的问题 优点缺点NewSQL 特性NewSQL 的主要特性三种SQL的对比TiDB怎么来的TiDB社区版和企业版TIDB核心特性 水平弹性扩展分布式事务支持金融级高可用实时 HTAP云原生的分布式数据库高度兼容 MySQLOLTP&OLAP&#xff…

openssl/bn.h: No such file or directory

报错截图 解决方法 ubuntu apt install libssl-dev -y centos yum install openssl-devel -y

第六章 支持向量机

文章目录 支持向量机间隔和支持向量对偶问题问题推导SMO 核函数实验 支持向量机 ⽀持向量机&#xff08;Support Vector Machines&#xff0c;SVM&#xff09; 优点&#xff1a;泛化错误率低&#xff0c;计算开销不⼤&#xff0c;结果易解释。缺点&#xff1a;对参数调节和核…

Python 教程之标准库概览

概要 Python 标准库非常庞大&#xff0c;所提供的组件涉及范围十分广泛&#xff0c;使用标准库我们可以让您轻松地完成各种任务。 以下是一些 Python3 标准库中的模块&#xff1a; 「os 模块」 os 模块提供了许多与操作系统交互的函数&#xff0c;例如创建、移动和删除文件和…

CLIP-GCD: Simple Language Guided Generalized Category Discovery(论文翻译)

CLIP-GCD: Simple Language Guided Generalized Category Discovery 摘要1 介绍2 相关工作2.1 NCD2.2 无监督聚类2.3 自监督和多模态预训练 3 方法3.1 GCD 问题设置3.2 我们的方法3.2.1 使用CLIP 在GCD 4 实验4.1 模型架构细节4.2 数据集和评估4.3 和最先进水平比较4.4 分析4.5…

Linux下 Docker容器引擎基础(1)

简述&#xff1a; Docker的容器技术可以在一台主机上轻松为任何应用创建一个轻量级的、可移植的、自给自足的容器。通过这种容器打包应用程序&#xff0c;意味着简化了重新部署、调试这些琐碎的重复工作&#xff0c;极大的提高了工作效率。例如&#xff1a;项目从腾讯云迁移阿…

尚硅谷大数据项目《在线教育之采集系统》笔记002

视频地址&#xff1a;尚硅谷大数据项目《在线教育之采集系统》_哔哩哔哩_bilibili 目录 P032 P033 P033 P034 P035 P036 P032 P033 # 1、定义组件&#xff0c;为各组件命名 a1.sources r1 a1.channels c1 a1.sinks - k1# 2、配置sources&#xff0c;描述source a1.sour…

ALLEGRO之Route菜单

本文主要介绍了ALLEGRO的Route菜单。 &#xff08;1&#xff09;Connect&#xff1a;走线&#xff1b; &#xff08;2&#xff09;Slide&#xff1a;推挤&#xff1b; &#xff08;3&#xff09;Timing Vision&#xff1a;等长设计时使用&#xff1f;暂不清楚&#xff1b; &…

oracle,获取每日24*60,所有分钟数

前言&#xff1a; 为规范用户的时间录入&#xff0c;因此我们采用下拉的方式&#xff0c;让用户选择需要的时间&#xff0c;因此我们需要将一天24小时的时间拆分为类似00:00,00:01...23:00,23:01,23:59。因此我们需要生成24*601440行的下拉复选值。具体效果如下图所示。 思路 1…