文献速递:深度学习肝脏肿瘤诊断---基于多相增强 CT 和临床数据的恶性肝肿瘤鉴别诊断深度学习

Title 

题目

Deep learning for diferential diagnosisof malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data

基于多相增强 CT 和临床数据的恶性肝肿瘤鉴别诊断深度学习

Abstract

摘要

Liver cancer remains the leading cause of cancer death globally, and the treatment strategies are dis

tinct for each type of malignant hepatic tumors. However, the diferential diagnosis before surgery is challenging and subjective. This study aims to build an automatic diagnostic model for diferentiating malignant hepatic tumors based on patients’ multimodal medical data including multi-phase contrast-enhanced computed tomography and clinical

features.

肝癌仍然是全球癌症死亡的主要原因,每种恶性肝肿瘤的治疗策略都不同。然而,手术前的鉴别诊断具有挑战性且主观性强。本研究旨在基于患者的多模态医疗数据构建自动诊断模型,以鉴别不同的恶性肝肿瘤,这些医疗数据包括多相增强计算机断层扫描和临床特征。

Conclusions

结论

We incorporated deep CNN and gated RNN in the STIC model design for diferentiating malignant

hepatic tumors based on multi-phase CECT and clinical features. Our model can assist doctors to achieve better diag nostic performance, which is expected to serve as an AI assistance system and promote the precise treatment of liver cancer.

我们在 STIC 模型设计中结合了深度 CNN 和门控 RNN,用于基于多相 CECT 和临床特征区分恶性肝肿瘤。我们的模型可以帮助医生达到更好的诊断性能,预期将作为一个 AI 辅助系统,促进肝癌的精准治疗。

Results

结果

The STIC model achieved an accuracy of 86.2% and AUC of 0.893 for classifying HCC and ICC on the test set. When extended to diferential diagnosis of malignant hepatic tumors, the STIC model achieved an accuracy of 72.6% on the test set, comparable with the diagnostic level of doctors’ consensus (70.8%). With the assistance of the STIC model, doctors achieved better performance than doctors’ consensus diagnosis, with an increase of 8.3% in accuracy and 26.9% in sensitivity for ICC diagnosis on average. On the external test set from center 2, the STIC model achieved an accuracy of 82.9%, which verify the model’s generalization ability.STIC 

模型在测试集上对 HCC 和 ICC 的分类准确率达到了 86.2%,AUC 为 0.893。当扩展到恶性肝肿瘤的鉴别诊断时,STIC 模型在测试集上的准确率达到了 72.6%,与医生共识的诊断水平(70.8%)相当。在 STIC 模型的协助下,医生的表现超过了医生共识诊断,平均准确率提高了 8.3%,对 ICC 诊断的敏感性提高了 26.9%。在来自中心 2 的外部测试集上,STIC 模型的准确率达到了 82.9%,验证了模型的泛化能力。

Method

方法

Our study consisted of 723 patients from two centers, who were pathologically diagnosed with HCC, ICC or metastatic liver cancer. The training set and the test set consisted of 499 and 113 patients from center 1, respec tively. The external test set consisted of 111 patients from center 2. We proposed a deep learning model with the modular design of SpatialExtractor-TemporalEncoder-Integration-Classifer (STIC), which take the advantage of deep CNN and gated RNN to efectively extract and integrate the diagnosis-related radiological and clinical features of patients.model.

我们的研究包括来自两个中心的 723 位经病理诊断为肝细胞癌(HCC)、肝内胆管细胞癌(ICC)或转移性肝癌的患者。训练集和测试集分别由来自中心 1 的 499 位和 113 位患者组成。外部测试集由来自中心 2 的 111 位患者组成。我们提出了一个深度学习模型,该模型的模块设计为空间提取器-时间编码器-集成-分类器(STIC),它利用深度 CNN 和门控 RNN 的优势有效提取和整合患者的诊断相关放射学和临床特征。

Figure

图片

Fig. 1 The fowchart of dataset setup, the architecture of the STIC model and the performance on primary malignant hepatic tumors classifcation. A This study consisted of 612 patients in method development cohort and 111 patients in external validation cohort, who were pathologically diagnosed with HCC, ICC or metastatic liver cancer. B The STIC model contains four diferent modules. SpatialExtractor module is a deep CNN that uses convolutional layers to extract detailed spatial features of CECT images. TemporalEncoder module uses gated RNN to mine the changing pattern among diferent CECT phases. In the Integration module, the TemporalEncoder module is concatenated with the vector of encoded dummy clinical variables. Finally, in the Classifer module, the Integration output is passed through the softmax activation function to implement the classifcation task. C The ROC curves of fve-fold cross-validation of the STIC model for classifying benign and malignant hepatic tumors in the preliminary study, where the mean ROC curve was obtained by interpolation of the ROC curves of each fold, with mean AUC of 0.987. D Comparison of the performance for diferencing HCC and ICC on the test set by ROC curve analysis. The AUC of the STIC model was 0.893 (95% CIs, 0.803–0.982), which was much higher than 0.709 (95% CIs, 0.573–0.845) in the Naive RBG model and 0.766 (95% CIs, 0.644–0.888) in the Naive joint model. E Among three models, the STIC model produced the best performance in distinguishing two primary malignant hepatic tumors, with accuracy of 86.2% (95% CIs, 74.6%-93.9%), sensitivity of 0.892 (95% CIs, 0.746–0.970) and specifcity of 0.810 (95% CIs, 0.581–0.946), where sensitivity and specifcity are defned by viewing HCC as positive and ICC as negative. The error bars represent 95% CIs calculated by Wald Z Method with Continuity Correction for accuracy, sensitivity and specifcity and by DeLong method for AUC. F Using McNemar’s Chi-squared test, the STIC model outperformed the Naive RBG model with an increase of 25.9% (95% CIs 11.0%-40.7%, p value=0.001) in accuracy and 0.270 (95% CIs 0.082–0.459,pvalue=0.009) in sensitivity. It also outperformed the Naive joint model with an increase of 17.2% (95% CIs 3.7%-30.8%, p value=0.016) in accuracy and 0.189 (95% CIs 0.015–0.363, p value=0.046) in sensitivity. G The distribution of the predicted score for HCC and ICC according to three models. For two benchmark models, the score predicted had much wider distribution. Our proposed STIC model had a more concentrated distribution of predicted scores for both HCC and ICC. H Comparison of the performance of the STIC model and two benchmark models using diferent extractor’s backbone for binary classifcation of primary malignant hepatic tumors. Using Cochran’s Q test, there were no signifcant diferences in the diagnostic level among STIC models with diferent extractor’s backbone. For Naïve RGB models with diferent extractor’s backbone, there were signifcant diferences in sensitivity (p value<0.001) and specifcity (p value=0.012). For Naïve joint models with diferent extractor’s backbone,there were also signifcant diferences in sensitivity (p value<0.001) and specifcity (p value<0.001)

图 1 数据集设置的流程图、STIC模型的架构以及在原发性恶性肝肿瘤分类上的性能。 A 本研究包括方法开发队列中的612位患者和外部验证队列中的111位患者,这些患者被病理诊断为HCC、ICC或转移性肝癌。B STIC模型包含四个不同的模块。空间提取器模块是一个深度CNN,使用卷积层提取CECT图像的详细空间特征。时间编码器模块使用门控RNN挖掘不同CECT阶段之间的变化模式。在集成模块中,时间编码器模块与编码的虚拟临床变量向量连接。最后,在分类器模块中,集成输出通过softmax激活函数传递以实现分类任务。C STIC模型在初步研究中对良性和恶性肝肿瘤进行分类的五折交叉验证的ROC曲线,其中平均ROC曲线通过插值每一折的ROC曲线获得,平均AUC为0.987。D 通过ROC曲线分析比较在测试集上区分HCC和ICC的性能。STIC模型的AUC为0.893(95% CI,0.803–0.982),远高于Naive RBG模型的0.709(95% CI,0.573–0.845)和Naive联合模型的0.766(95% CI,0.644–0.888)。E 在三个模型中,STIC模型在区分两种原发性恶性肝肿瘤方面产生了最佳性能,准确率为86.2%(95% CI,74.6%-93.9%),敏感性为0.892(95% CI,0.746–0.970)和特异性为0.810(95% CI,0.581–0.946),其中敏感性和特异性是将HCC视为阳性,ICC视为阴性定义的。误差条代表准确性、敏感性和特异性的95% CI由Wald Z方法加连续性校正计算,AUC由DeLong方法计算。F 使用McNemar的卡方检验,STIC模型的性能超过了Naive RBG模型,在准确性上增加了25.9%(95% CI 11.0%-40.7%,p值=0.001)和在敏感性上增加了0.270(95% CI 0.082–0.459,p值=0.009)。它也超过了Naive联合模型,在准确性上增加了17.2%(95% CI 3.7%-30.8%,p值=0.016)和在敏感性上增加了0.189(95% CI 0.015–0.363,p值=0.046)。G 根据三个模型对HCC和ICC的预测分数分布。对于两个基准模型,预测分数有更广的分布。我们提出的STIC模型对HCC和ICC的预测分数分布更集中。H 使用不同提取器骨架对原发性恶性肝肿瘤进行二元分类的STIC模型和两个基准模型的性能比较。使用Cochran的Q检验,STIC模型与不同提取器骨架之间在诊断水平上没有显著差异。对于具有不同提取器骨架的Naïve RGB模型,敏感性(p值

图片

Fig. 2 Model’s performance on the multinomial classifcation of malignant hepatic tumors A Micro-average and macro-average ROC curves of the STIC model for diferentiating HCC, ICC and metastasis on the test set. B The ROC curves of the STIC model for HCC, ICC, metastasis diagnosis on the test set and corresponding diagnosis points of doctors’ consensus and three STIC-assisted doctors. The orange star represents the diagnostic performance of doctors’ consensus. Three triangles with diferent colors represent the diagnostic performance of three STIC-assisted doctors, respectively, and the red pentagon represents the average diagnostic level of these three doctors. For the ICC diagnosis, the performance of doctors’ consensus diagnosis was below the ROC curve of the STIC model, and the performances of three STIC-assisted doctors were all above the ROC curve. C The total accuracy of the STIC model was 72.6% (95% CIs, 63.4%-80.5%), and the total accuracy of the doctors’ consensus was 70.8% (95% CIs, 61.5%-79.0%). Three STIC-assisted doctors achieved the total accuracy of 77.0% (95% CIs, 68.1%-84.4%), 78.8% (95% CIs, 70.1%-85.9%) and 81.4% (95% CIs, 73.0%-88.1%) on the test set, respectively. Using Cochran’s Q test, there was no signifcant diferences in the diagnostic level among three STIC-assisted doctors. When comparing the diagnostic level between three STIC-assisted doctors and doctors’ consensus diagnosis, there were signifcant diferences in sensitivity for ICC (p value=0.038). D The case study of three test samples pathologically diagnosed with ICC. For case 1, the enhancement pattern of CECT was typical, where ICC tumor showed homogeneously low attenuation on NC phase, faint peripheral enhancement on ART phase and gradual centripetal enhancement on PV phase. The diagnosis of doctors’ consensus was ICC. The output of the STIC model was {HCC: 0.067, ICC: 0.646, metastasis: 0.287}. All three STIC-assisted doctors independently diagnosed it as ICC. For case 2, the enhancement pattern of CECT was similar with the typical pattern of HCC tumor, exhibiting low attenuation on NC phase, the early peak of enhancement on ART phase, and followed by a continuous decrease in PV phase. The doctors’ consensus misdiagnosed it as HCC. The output of the STIC model was {HCC: 0.881, ICC: 0.067, metastasis: 0.052}, which also diagnosed it as HCC incorrectly. All three STIC-assisted doctors

misdiagnosed it as HCC. For case 3, there was peripheral enhancement on ART phase, but it was not obvious to the human eyes. The doctors’consensus misdiagnosed it as metastasis. The output of the STIC model was {HCC: 0.114, ICC: 0.587, metastasis: 0.299}, which diagnosed it as ICC correctly. All three STIC-assisted doctors diagnosed it as ICC correctly. E The case study of three test samples pathologically diagnosed with metastasis. For case 1, the doctors’ consensus misdiagnosed it as ICC. The output of the STIC model was {HCC: 0.031, ICC: 0.343, metastasis: 0.626}.Two STIC-assisted doctors independently diagnosed it as metastasis correctly. One STIC-assisted doctor misdiagnosed it as metastasis. For case 2,the doctors’ consensus misdiagnosed it as ICC. The output of the STIC model was {HCC: 0.306, ICC: 0.240, metastasis: 0.454}. All three STIC-assisted doctors independently diagnosed it as metastasis correctly. For case 3, the doctors’ consensus misdiagnosed it as ICC. The output of the STIC model

was {HCC: 0.173, ICC: 0.176, metastasis: 0.651}. All three STIC-assisted doctors independently diagnosed it as metastasis correctly. F The ROC curve analysis of the STIC model for HCC, ICC, metastasis diagnosis on the external test set for additional verifcation. The AUC for diagnosis of HCC, ICC and metastasis on the external test set was 0.986, 0.881 and 0.920, respectively. G Comparison of the performance of the STIC model on the test set from center 1 and on the external test set from center 2 for diferentiating malignant hepatic tumors. Using McNemar’s Chi-squared test, the STIC model’s performance has no signifcant diference on the center 1 and center 2 for the accuracy, sensitivity and specifcity of each type of malignant tumors. Using DeLong test for two ROC curves’ comparison, the STIC mode achieved signifcant better performance on the external test set from center 2 than on the test set from center 1 for the AUC of HCC diagnosis (p value=0.048) and ICC diagnosis (p value=0.039)

图 2 模型在恶性肝肿瘤多项分类上的性能 A STIC模型在测试集上区分HCC、ICC和转移性肿瘤的微平均和宏平均ROC曲线。B 测试集上STIC模型对HCC、ICC、转移性肿瘤诊断的ROC曲线及医生共识和三位STIC辅助医生的对应诊断点。橙色星星代表医生共识的诊断性能。三个不同颜色的三角形分别代表三位STIC辅助医生的诊断性能,红色五边形代表这三位医生的平均诊断水平。对于ICC诊断,医生共识诊断的性能低于STIC模型的ROC曲线,三位STIC辅助医生的性能都高于ROC曲线。C STIC模型的总准确率为72.6%(95% CI,63.4%-80.5%),医生共识的总准确率为70.8%(95% CI,61.5%-79.0%)。三位STIC辅助医生在测试集上分别达到了77.0%(95% CI,68.1%-84.4%)、78.8%(95% CI,70.1%-85.9%)和81.4%(95% CI,73.0%-88.1%)的总准确率。使用Cochran的Q检验,三位STIC辅助医生之间在诊断水平上没有显著差异。在比较三位STIC辅助医生和医生共识诊断的诊断水平时,对于ICC的敏感性存在显著差异(p值=0.038)。D 三个病理诊断为ICC的测试样本案例研究。对于案例1,CECT的增强模式典型,其中ICC肿瘤在NC阶段显示均匀低衰减,在ART阶段显示微弱的周边增强,在PV阶段显示逐渐向心性增强。医生共识的诊断是ICC。STIC模型的输出是{HCC: 0.067, ICC: 0.646, 转移: 0.287}。所有三位STIC辅助医生独立诊断为ICC。对于案例2,CECT的增强模式与HCC肿瘤的典型模式相似,在NC阶段显示低衰减,在ART阶段显示早期增强峰值,然后在PV阶段持续减少。医生共识误诊为HCC。STIC模型的输出是{HCC: 0.881, ICC: 0.067, 转移: 0.052},也错误地诊断为HCC。所有三位STIC辅助医生误诊为HCC。对于案例3,在ART阶段有周边增强,但对人眼来说不明显。医生共识误诊为转移。STIC模型的输出是{HCC: 0.114, ICC: 0.587, 转移: 0.299},正确地诊断为ICC。所有三位STIC辅助医生正确诊断为ICC。E 三个病理诊断为转移的测试样本案例研究。对于案例1,医生共识误诊为ICC。STIC模型的输出是{HCC: 0.031, ICC: 0.343, 转移: 0.626}。两位STIC辅助医生独

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/537601.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024 年 AI代码助手AI Coding Assistant智能工具

AI代码助手&#xff08;AI Coding Assistant&#xff09;是一种利用人工智能帮助开发人员更快、更准确地编写代码的软件工具。 它可以通过根据提示生成代码或在你实时编写代码时建议自动完成代码来实现此目的。 以下是AI代码助手可以做的一些事情&#xff1a; 与你使用的流行代…

指令集体系简读

这一部分&#xff0c;采用问答的方式来进行梳理&#xff1b; 什么是指令集体系&#xff1f; 指令集体系(Instruction Set Architecture,ISA)是规定处理器的外在行为的一系列内容的统称&#xff0c;它包括&#xff1a; 基本数据类型(data types)、指令(instructions)、寄存器…

Socks5代理IP如何使用?详细教程解析

当我们在互联网上浏览网页、下载文件或者进行在线活动时&#xff0c;隐私和安全问题常常被提及。在这样的环境下&#xff0c;一个有效的解决方案是使用Sock5IP。本教程将向您介绍Sock5IP的使用方法&#xff0c;帮助您保护个人隐私并提升网络安全。 一、什么是Sock5IP&#xff1…

使用了代理IP怎么还会被封?代理IP到底有没有效果?

代理IP作为一种网络工具&#xff0c;被广泛应用于各种场景&#xff0c;例如网络爬虫、海外购物、规避地区限制等。然而&#xff0c;很多用户在使用代理IP的过程中却发现自己的账号被封禁&#xff0c;这让他们不禁产生疑问&#xff1a;使用了代理IP怎么还会被封&#xff1f;代理…

MXNet安装:专业指南与深度解析

一、引言 MXNet是一个高效且灵活的深度学习框架&#xff0c;它支持多种编程语言和平台&#xff0c;并提供了丰富的深度学习算法和工具。随着深度学习技术的广泛应用&#xff0c;MXNet因其出色的性能和易用性受到了越来越多开发者和研究人员的青睐。本文将详细介绍MXNet的安装过…

YOLOV5 分类:利用yolov5进行图像分类

1、前言 之前介绍了yolov5的目标检测示例,这次将介绍yolov5的分类展示 目标检测:YOLOv5 项目:训练代码和参数详细介绍(train)_yolov5训练代码的详解-CSDN博客 yolov5和其他网络的性能对比 yolov5分类的代码部分在这 2、数据集准备 yolov5分类的数据集就是常规的摆放方式…

SpringCloudAlibabaSeate处理分布式事务

SpringCloudAlibabaSeate处理分布式事务 1、部分面试题 微服务boot/cloud做的项目&#xff0c;你不可能只有一个数据库吧&#xff1f;那么多个数据库之间如何处理分布式事务的&#xff1f; 一个场景&#xff1a;在订单支付成功后&#xff0c;交易中心会调用订单中心的服务把订…

如何在公网环境远程管理内网Windows系统部署的MongoDB数据库

文章目录 前言1. 安装数据库2. 内网穿透2.1 安装cpolar内网穿透2.2 创建隧道映射2.3 测试随机公网地址远程连接 3. 配置固定TCP端口地址3.1 保留一个固定的公网TCP端口地址3.2 配置固定公网TCP端口地址3.3 测试固定地址公网远程访问 前言 MongoDB是一个基于分布式文件存储的数…

通讯录项目(用c语言实现)

一.什么是通讯录 通讯录是一种用于存储联系人信息的工具或应用程序。它是一种电子化的地址簿&#xff0c;用于记录和管理个人、机构或组织的联系方式&#xff0c;如姓名、电话号码、电子邮件地址和邮寄地址等。通讯录的目的是方便用户在需要时查找和联系他人。 通讯录通常以列…

DC-DC 5V2A异步升压5V2A输出电源升压芯片2.6-5.5V供电

一、芯片概述&#xff1a; FP6298是一个电流模式升压DC-DC转换器。它是内置PWM电路0.08Ω功率MOSFET&#xff0c;使该调节器高效。内部补偿网络还可以最小化多达6个外部组件计数。误差放大器的非反相输入连接到一个0.6V的精度参考电压&#xff0c;内部的软启动功能可以降低涌入…

【2024最新博客美化教程重置版】在网页中使用L2Dwidget二次元可动人物前端插件,让动漫美女伴随你左右!

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;程序猿、设计师、技术分享 &#x1f40b; 希望大家多多支持, 我们一起学习和进步&#xff01; &#x1f3c5; 欢迎评论 ❤️点赞&#x1f4ac;评论 &#x1f4c2;收藏 &#x1f4c2;加关注 L2Dwidget 二次…

Java 中文官方教程 2022 版(三十四)

原文&#xff1a;docs.oracle.com/javase/tutorial/reallybigindex.html 长期持久性 原文&#xff1a;docs.oracle.com/javase/tutorial/javabeans/advanced/longpersistence.html 长期持久性是一种模型&#xff0c;可以将 bean 保存为 XML 格式。 有关 XML 格式和如何为非 be…

SQL执行流程图文分析:从连接到执行的全貌

SQL执行总流程 下面就是 MySQL 执行一条 SQL 查询语句的流程&#xff0c;也从图中可以看到 MySQL 内部架构里的各个功能模块。 MySQL 的架构共分为两层&#xff1a;Server 层和存储引擎层&#xff0c; Server 层负责建立连接、分析和执行 SQL。MySQL 大多数的核心功能模块都在…

员工管理系统!(免费获取源码)

​今天给大家分享一套基于SpringbootVue的员工管理系统源码&#xff0c;在实际项目中可以直接复用。(免费提供&#xff0c;文末自取) 一、系统运行图 1、登陆页面 2、后台管理页面 3、职工管理 4、请假审批管理 二、系统搭建视频教程 源码免费领取方式 后台私信回复员工即可…

从大量数据到大数据,King’s SDMS仪器数据采集及科学数据管理系统的应用

对于实验室或检测机构&#xff0c;仪器设备是所有业务开展的基础&#xff0c;数据则是核心命脉&#xff0c;而传统的仪器设备原始数据收集方式&#xff0c;效率低耗时长、操作流程不规范、不易保存与查找、错误率高、易篡改等成了制约检测机构持续高速发展的瓶颈和弊端&#xf…

kvm虚拟机磁盘镜像加密

一、qcow2的aes加密 低版本的qemu能够支持对qcow2文件进行aes加密的方式&#xff0c;例如对一个已经存在的磁盘文件test.qcow2&#xff0c;可以将其转换为经过加密的qcow2文件。 qemu-img convert -O qcow2 --object secret,idsec0,data123456 -o encryptionon,encrypt.key-s…

springboot发送邮件

很久之前就想写一个总结的&#xff0c;一直没写&#xff0c;今天刚好又碰见了发送邮箱验证码的需求&#xff0c;刚好记录一波 一.核心依赖如下&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-par…

Python 全栈体系【四阶】(二十九)

第五章 深度学习 四、TensorFlow 5. 张量及基本运算 5.1 张量的阶与形状 阶&#xff1a;张量的维度&#xff08;数方括号的层数&#xff09; 形状表示方法 0 维&#xff1a;( )1 维&#xff1a;(5)&#xff0c;1 行 5 个元素2 维&#xff1a;(2,3)&#xff0c;2 行 3 列3…

redis数据类型介绍

Redis是一种开源的高性能内存数据存储系统&#xff0c;支持多种数据结构的操作。下面是Redis支持的五种数据类型介绍&#xff1a; 1. 字符串&#xff08;string&#xff09;&#xff1a;Redis中字符串是二进制安全的&#xff0c;允许存储任何格式的数据&#xff0c;如图片、视频…

Springboot集成RabbitMq+延时队列

1. 引入jar包 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency> 2.配置yml 2.1 配置生产者yml spring:rabbitmq:host: localhostport: 5672virtual-host: …