SCI一区 | Matlab实现INFO-TCN-BiGRU-Attention向量加权算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

SCI一区 | Matlab实现INFO-TCN-BiGRU-Attention向量加权算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现INFO-TCN-BiGRU-Attention向量加权算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于INFO-TCN-BiGRU-Attention向量加权算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

多变量时间序列预测是一项重要的任务,它涉及对具有多个变量的时间序列数据进行预测。为了改进这一任务的预测性能,研究者们提出了许多不同的模型和算法。其中一种结合了时间卷积网络(Temporal Convolutional Network,TCN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和注意力机制(Attention)的模型。

该算法的核心思想是利用时间卷积网络来捕捉时间序列数据中的长期依赖关系,通过双向门控循环单元来建模序列数据的上下文信息,并通过注意力机制来自适应地加权不同变量的重要性。

步骤如下:

时间卷积网络(TCN):使用一维卷积层来提取时间序列数据中的局部和全局特征。时间卷积能够通过不同大小的卷积核捕捉不同长度的时间依赖关系,从而更好地建模序列中的长期依赖。

双向门控循环单元(BiGRU):将TCN的输出作为输入,使用双向门控循环单元来编码序列数据的上下文信息。双向GRU能够同时考虑序列数据的过去和未来信息,提高了对序列中重要特征的捕捉能力。

注意力机制(Attention):通过引入注意力机制,模型可以自适应地关注输入序列中不同变量的重要性。注意力机制可以根据序列数据的不同特征,动态地调整它们在预测任务中的权重,从而提高模型的表达能力和预测准确性。

输出层:最后,根据模型的具体任务需求,可以使用不同的输出层结构,如全连接层来进行最终的预测。

通过将时间卷积网络、双向门控循环单元和注意力机制相结合,INFO-TCN-BiGRU-Attention鲸鱼算法能够更好地建模多变量时间序列数据的复杂关系,并提高预测性能。然而,需要注意的是,该算法的具体实现可能会根据具体问题和数据集的特点进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现INFO-TCN-BiGRU-Attention向量加权算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

%% 

%% 算法优化TCN-BiGRU-Attention,实现多变量输入单步预测
clc;
clear 
close all



%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);

outputName = layer.Name;

for i = 1:numBlocks
    dilationFactor = 2^(i-1);
    
    layers = [
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)
        layerNormalizationLayer
        dropoutLayer(dropoutFactor) 
        % spatialDropoutLayer(dropoutFactor)
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")
        layerNormalizationLayer
        reluLayer
        dropoutLayer(dropoutFactor) 
        additionLayer(2,Name="add_"+i)];

    % Add and connect layers.
    lgraph = addLayers(lgraph,layers);
    lgraph = connectLayers(lgraph,outputName,"conv1_"+i);

    % Skip connection.
    if i == 1
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end
    
    % Update layer output name.
    outputName = "add_" + i;
end


function [z] = levy(n,m,beta)

    num = gamma(1+beta)*sin(pi*beta/2); % used for Numerator 
    
    den = gamma((1+beta)/2)*beta*2^((beta-1)/2); % used for Denominator

    sigma_u = (num/den)^(1/beta);% Standard deviation

    u = random('Normal',0,sigma_u,n,m); 
    
    v = random('Normal',0,1,n,m);

    z =u./(abs(v).^(1/beta));

  
  end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/536237.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

详解小度Wi-Fi内部芯片及电路原理图分析

小度随身WiFi是一款便携式USB路由器,它实现了用户跨终端联网,随身携带,可以在室内实现免费WiFi覆盖。外形美观,小巧便携。 这一款小度WiFi采用的主芯片是MT7601UN,一款高度集成的Wi-Fi单芯片,支持150 Mbp…

Java工具类:批量发送邮件(带附件)

​ 不好用请移至评论区揍我 原创代码,请勿转载,谢谢! 一、介绍 用于给用户发送特定的邮件内容,支持附件、批量发送邮箱账号必须要开启 SMTP 服务(具体见下文教程)本文邮箱设置示例以”网易邮箱“为例&…

PyTorch-Lightning:trining_step的自动优化

文章目录 PyTorch-Lightning:trining_step的自动优化总结: class _ AutomaticOptimization()def rundef _make_closuredef _training_stepclass ClosureResult():def from_training_step_output class Closure PyTorch-Lightning:trining_ste…

嵌入式单片机入职第二天-EEPROM与IIC

上午: 1.安装Jlink驱动,死活没反应,因为昨天才装完系统,领导让我装电脑主板驱动 领导方法进惠普官网通过查询电脑型号,里面几十个驱动搞得我眼花,领导告诉我进官网就去开会了,可能因为是外网&…

Win11 WSL2 install Ubuntu20.04 and Seismic Unix

Win11系统,先启用或关闭Windows功能,勾选“适用于Linux的Windows子系统”和“虚拟机平台”两项 设置wsl默认版本为wsl2,并更新 wsl --list --verbose # 查看安装版本及内容 wsl --set-default-version 2 # 设置wsl默认版本为wsl2 # 已安装…

nvm安装详细教程(安装nvm、node、npm、cnpm、yarn及环境变量配置)

一、安装nvm 1. 下载nvm 点击 网盘下载 进行下载 2、双击下载好的 nvm-1.1.12-setup.zip 文件 3.双击 nvm-setup.exe 开始安装 4. 选择我接受,然后点击next 5.选择nvm安装路径,路径名称不要有空格,然后点击next 6.node.js安装路径&#…

智慧矿山视频智能监控与安全监管方案

一、行业背景 随着全球能源需求的日益增长,矿业行业作为国民经济的重要支柱,其发展日益受到广泛关注。然而,传统矿山管理模式的局限性逐渐显现,如生产安全、人员监管、风险预警等方面的问题日益突出。因此,智慧矿山智…

【算法练习】30:快速排序学习笔记

一、快速排序的算法思想 原理:快速排序基于分治策略。它的基本思想是选择一个元素作为“基准”,将待排序序列划分为两个子序列,使得左边的子序列中的所有元素都小于基准,右边的子序列中的所有元素都大于基准。这个划分操作被称为分…

【Python函数和类3/6】函数的返回值

目录 知识回顾 目标 函数的返回值 Tips 练习 ​编辑return的其它特性 任意类型的返回值 返回多个值 return的位置 小结 局部变量 局部变量的作用域 全局变量 全局变量的作用域 同名变量 pi的作用域 总结 知识回顾 在上篇博客中,我们学习给函数设置参…

集群开发学习(一)(安装GO和MySQL,K8S基础概念)

完成gin小任务 参考文档: https://www.kancloud.cn/jiajunxi/ginweb100/1801414 https://github.com/hanjialeOK/going 最终代码地址:https://github.com/qinliangql/gin_mini_test.git 学习 1.安装go wget https://dl.google.com/go/go1.20.2.linu…

玩机进阶教程------手机定制机 定制系统 解除系统安装软件限制的一些步骤解析

定制机 在于各工作室与商家合作定制rom中有一些定制机。限制用户私自安装第三方软件。或者限制解锁 。无法如正常机登陆账号等等。定制机一般用于固定行业或者一些部门。专机专用。例如很多巴枪扫描机型等等。或者一些小牌机型。对于没有官方包的机型首先要导出各个分区来制作…

【OpenVINO™】使用 OpenVINO™ C# API 部署 YOLOv9 目标检测和实例分割模型(上篇)

YOLOv9模型是YOLO系列实时目标检测算法中的最新版本,代表着该系列在准确性、速度和效率方面的又一次重大飞跃。它通过引入先进的深度学习技术和创新的架构设计,如通用ELAN(GELAN)和可编程梯度信息(PGI)&…

复合数据类型

在C语言中,复合数据类型是指那些可以包含多个简单数据类型的数据类型。以下是一些常见的C语言复合数据类型以及相关的例子: 1. 数组(Arrays): 数组是一种可以存储多个相同类型数据的数据结构。例如: #in…

从像素游戏到 3A 大作的游戏引擎/框架

Bevy —— Rust 构建的游戏引擎 Bevy 是一款由 Rust 语言构建且简单明了的数据驱动的游戏引擎,并将永远保持开源且免费。 Mach —— Zig 游戏引擎和图形工具包 Mach 是一个 Zig 游戏引擎和图形工具包,用于构建高性能、真正跨平台、健壮且模块化的游戏&…

日程安排组件DHTMLX Scheduler v7.0新版亮点 - 拥有多种全新的主题

DHTMLX Scheduler是一个类似于Google日历的JavaScript日程安排控件,日历事件通过Ajax动态加载,支持通过拖放功能调整事件日期和时间,事件可以按天、周、月三个种视图显示。 备受关注的DHTMLX Scheduler 7.0版本日前正式发布了,如…

JS原生DOM操作 - 获得元素/网页大小/元素宽高

文章目录 获得元素的方法获取页面元素位置宽高概念方法获得网页/元素宽高clientHeight和clientWidth:scrollHeight和scrollWidth:window.innerWidth:element.style.width: offsetXXX 获得网页元素的宽高和相对父元素位置&#xff…

有道词典网页版接口分析与爬虫研究

说明:仅供学习使用,请勿用于非法用途,若有侵权,请联系博主删除 作者:zhu6201976 一、目标站点 有道词典网页版:网易有道 二、目标接口 url:https://dict.youdao.com/jsonapi_s?doctypejson&…

通过8种加锁情况来弄懂加锁对于线程执行顺序的影响

1个资源类对象,2个线程,2个同步方法,第二个线程等待1s后开启。 //资源类 public class Example {//2个同步方法public synchronized void method1(){System.out.println("线程1正在执行...");}public synchronized void method2()…

(2022级)成都工业学院数据库原理及应用实验三:数据定义语言DDL

唉,用爱发电连赞都没几个,博主感觉没有动力了 想要完整版的sql文件的同学们,点赞评论截图,发送到2923612607qq,com,我就会把sql文件以及如何导入sql文件到navicat的使用教程发给你的 基本上是无脑教程了,…

Banana Pi BPI-M7 RK3588开发板运行RKLLM软件堆AI大模型部署

关于Banana Pi BPI-M7 Banana Pi BPI-M7 采用Rockchip RK3588,板载8/16/32G RAM内存和 64/128G eMMC存储,支持无线wifi6和蓝牙5.2。2x2.5G网络端口,1个HDMIout标准 输出口,2x USB3.0,2xTYPE-C,2x MIPI CSI…