科研学习|可视化——相关性结果的可视化

一、相关性分析介绍

相关性分析是指研究两种或者两种以上的变量之间相关关系的统计分析方法,一般分析步骤为:

  • 1)判断变量间是否存在关联;
  • 2)分析关联关系(线性/非线性)、关联方向(正相关/负相关)、关联数量(单相关/复相关/偏相关)和关联强度(显著相关/高度相关/中度相关/弱相关)等关联特征。

常用于度量两个或多个变量之间相关程度的指标有:

如何把这些关联特征表达得更易于理解,那就需要借助将相关性分析结果可视化的方法了。

在平时的论文阅读中我们经常看到有关相关性分析的内容,作者们根据自己的表达需求,也向我们展示了五花八门的绘图样式,比如:散点图、拟合线、相关矩阵(热力图)、相关性空间分布图等。接下来详细向大家介绍这些图表的特点。

二、散点图

一般情况下我们可以通过散点图来检测和了解变量间的关系。如果变量之间存在某种关联,那么数据点就会在图上呈现某种趋势。在某些情况下(如样本点较少),可能会出现聚集趋势不明显的问题,这时我们可以借助线性拟合而成的“趋势线”来辅助分析。

如下图a中,利用散点图展现了SSP126、SSP245、SSP370和SSP585排放情景下未来降水增长率与未来气温增长率之间的约束关系。由于单个情景下的散点数量较少,且多个情景的散点放置于同一张图中进行比较,散点的聚集趋势难以肉眼捕捉,因此该图对各个场景下的散点进行线性拟合,展现出散点的分布趋势线,便于读者更为直观地解读。

  1. 这类散点图可借助Python实现,可参考:“Python-matplotlib 学术散点图 EE 统计及绘制”
  2. 也可以借助R语言实现,可参考:“R-ggplot2 学术散点图绘制”

三、散点密度图

若需对数据量很大的变量相关性进行可视化,可考虑在散点图的基础上添加热力图元素,即通过将数据计数映射到颜色,来表现数据的分布情况

下图为无云日GRSAD模拟的逐月湖泊面积与另一个数据集的6715个湖泊逐月面积的比较。图a显示了两个变量之间分布的密集程度,并通过添加辅助线的方式,在图中显示相应点对应的拟合效果(即R2 — 决定系数,相关系数的平方)。

  1. 使用Matlab绘制散点密度图,可参考:“如何使用Matlab绘制hist2d/密度散点图” — 
  2. 还可通过R语言绘制,可参考:“Density 2d” — https://r-graph-gallery.com/2d-

四、相关性空间分布图

当需要在流域、全国、甚至全球这样的大空间尺度上进行相关性分析时,简单的散点图+拟合线难以表达出相关性的空间变异性。此时,在每个网格单元上计算变量之间的相关系数,并绘制其空间分布图,会是一个很好的选择。

例如,下图展示了1982-2015年北纬30°以上的地区植被生长与水资源可用性指数之间相关性的空间分布及相应的统计值。图中的黑色原点表示该点所在计算单元的相关系数通过了显著性检验(p<0.05)。

  1. 可通过Matlab计算栅格数据相关性及其显著性(M-K检验),参考:“【Matlab】栅格数据相关分析及显著性检验”

五、相关性矩阵图

相关性矩阵图的表达优势在于单个图上丰富的颜色变化可直观反映数据信息,同时,矩阵上还可以同时显示对应的p-value数值,添加其他图形元素等,在一张图中展现出多个变量间的关联方向、关联数量和关联强度等关联特征。

如下图的图(a)和图(b)分别利用了相关性矩阵图来验证策略a和a+下增强回归树(BRT)模型在时间尺度上的性能。该矩阵中的绿色色块越多且越深,则说明该策略下的训练数据和测试数据的相关性越高;反之,深棕色色块越多且越深,则说明该策略下的训练数据和测试数据的相关性越低。

相关性矩阵图除了上图的表达方式外,还可根据自己的需求对图的颜色、图例、数值标签等特征进行调整,一般可以通过R语言的corrplot包、corrgram包、GGally包、ggcorrplot包等实现,参考:

“超多类别!这个相关性矩阵绘制工具绝了!”

“corrplot包可视化相关性矩阵的详细教程”

六、成对矩阵图

成对矩阵图融合了散点图、关系拟合线、概率分布图以及相关系数值。能将图和表格数据结合起来,真正做到一图胜千言!适用于多变量相关性分析的可视化。

成对矩阵图可通过R语言的ggpair函数实现方法,参考:

“Pairs plot with ggpairs” — https://r-charts.com/correlatio

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/535496.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

向南而行 攀“高”逐“新 ” ,南山举行深港校企成果对接交流活动

春风花草香&#xff0c;湾区气象新。 4月10日&#xff0c;“向南而行”深港校企成果对接交流活动在深圳人才公园求贤阁举行。南山与香港一家亲&#xff0c;“双向奔赴”拓展合作新空间。 今年是《粤港澳大湾区发展规划纲要》发布5周年。5年来&#xff0c;南山与香港从“硬联通…

大话设计模式——19.责任链模式(Chain of Responsibility Pattern)

简介 使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接受者之间的耦合关系。将这些对象连成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;直到有一个对象处理它为止。 主要有两个核心行为&#xff1a;1.处理请求&#xff1b;2.将请求传递到下一节点 U…

vue简单使用四(计算属性、过滤器、侦听器和生命周期)

目录 计算属性&#xff1a; 侦听器&#xff1a; 过滤器&#xff1a; 生命周期 &#xff1a; 计算属性&#xff1a; 查看arrs这个数组的长度&#xff1a; 输出结果&#xff1a; 完整代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><me…

Windows终端添加git bash

环境&#xff1a;windows11 终端&#xff1a;windows terminal git bash默认的界面不太好看&#xff0c;添加到终端会比较好用 步骤 打开 windows terminal&#xff0c;在向下箭头 点击 设置左侧栏 点击 “添加新配置文件”&#xff0c;如下图配置&#xff0c;主要修改项&…

2024年Flink CDC 实时同步数据(MySQL到MySQL)

#准备工作# 看到一下图片说明执行成功&#xff01;&#xff01;&#xff01; 异常处理及分析&#xff1a; Could not execute SQL statement. Reason: org.apache.flink.sql.parser.impl.ParseException: Encountered "\connector\" at line 21, column 3. Was expec…

PostgreSQL强势崛起,选择它还是MySQL

大家好&#xff0c;关系型数据库&#xff08;RDBMS&#xff09;作为数据管理的基石&#xff0c;自数据仓库兴起之初便扮演着核心角色&#xff0c;并在数据科学的发展浪潮中持续发挥着价值。即便在人工智能和大型语言模型&#xff08;LLM&#xff09;日益成熟的今天&#xff0c;…

Linux使用C语言实现Socket编程

Socket编程 这一个课程的笔记 相关文章 协议 Socket编程 高并发服务器实现 线程池 网络套接字 socket: &#xff08;电源&#xff09;插座&#xff08;电器上的&#xff09;插口&#xff0c;插孔&#xff0c;管座 在通信过程中, 套接字是成对存在的, 一个客户端的套接字, 一个…

医疗器械UDI码的DI和PI什么意思

一、理解医疗器械UDI 医疗器械的UDI码是Unique Device Identifier Code的缩写&#xff0c;意为唯一设备识别码。 医疗器械的UDI码是唯一设备识别码&#xff0c;由两个部分组成&#xff1a;DI和PI。 1.1、DI 理解 DI&#xff08;Device Identifier&#xff0c;设备标识符&am…

19、矩阵-螺旋矩阵

思路: 这道题主要是对空间上有所思考&#xff0c;每次转一圈上右下左各减少一层。不妨设top&#xff0c;right&#xff0c;down&#xff0c;left&#xff0c;每次旋转一圈 top&#xff0c;right--&#xff0c;down--&#xff0c;left 代码如下&#xff1a; class Solution …

【炒股Zero To Hero】MACD金叉死叉到底是否有效,加上这个指标回报率增加197倍

移动平均收敛散度&#xff08;MACD - Moving Average Convergence Divergence&#xff09;是一种趋势跟踪动量指标&#xff0c;显示了证券价格的两个移动平均之间的关系。它用于识别趋势的方向和强度&#xff0c;属于技术分析中振荡器的一类。 MACD如何衡量股票及其趋势 有两…

蜘蛛池规矩采集优化与运用技巧 什么是蜘蛛池/SEO蜘蛛池怎么养?

作为一名网络内容修改&#xff0c;我常常需求从各种网站上收集文章并转载到咱们的网站上。而在这个过程中&#xff0c;我深深感受到了蜘蛛池对我的帮助。今日&#xff0c;我就来共享一下我对蜘蛛池收集规矩的亲自感受。 本文 虚良SEO 原创&#xff0c;转载保留链接&#xff01…

【电子通识】热风枪的结构与使用方法

热风枪的结构 热风枪是专门用来拆焊、焊接贴片元器件和贴片集成电路的焊接工具&#xff0c;它主要由主机和热风焊枪两大部分构成。 热风枪主要有电源开关、风速设置、温度设置、热风连接等部件组成。根据不同品牌和价位的热风枪&#xff0c;有一些功能齐全的也集成了烙铁功能。…

绿联 安装火狐浏览器(Firefox),支持访问路由器

绿联 安装火狐浏览器&#xff08;Firefox&#xff09;&#xff0c;支持访问路由器 1、镜像 linuxserver/firefox:latest 前置条件&#xff1a;动态公网IP。 已知问题&#xff1a; 直接输入中文时&#xff0c;不能完整输入&#xff0c;也可能输入法无法切换到中文&#xff0c;可…

Post表单提交后端接不到参数

项目背景&#xff1a; 框架&#xff1a;Springboot 版本&#xff1a;1.5.6.REAEASE 问题描述 Postman通过表单提交请求时后端接不到值 原因分析&#xff1a; 启动项中注入其他Bean时取名叫dispatcherServlet&#xff0c;当发现http接口无法访问时&#xff0c;原开发人员又…

albef论文学习

首先要知道vit是啥东西。vit就是transformer模型在图像领域的运用。 transformer模型原本是用于自然语言的&#xff0c;encoder和decoder接受的都是文字。vit把图像分割成很多个小块&#xff0c;把各个小块拉长当成向量来用&#xff0c;接下来就是一样的。最后接一个全连接层做…

(学习日记)2024.04.12:UCOSIII第四十节:软件定时器函数接口讲解

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…

编程技巧(五) mysql中查询将行转为列逗号隔开拼接

让清单成为一种习惯 互联网时代的变革,不再是简单的开发部署上线,持续,正确,安全地把事情做好尤其重要;把事情做好的前提是做一个可量化可执行的清单,让工程师就可以操作的清单而不是专家才能操作: 设定检查点 根据节点执行检查程序操作确认或边读边做 二者选其一不要太…

CSS导读 (元素显示模式)

&#xff08;大家好&#xff0c;今天我们将继续来学习CSS的相关知识&#xff0c;大家可以在评论区进行互动答疑哦~加油&#xff01;&#x1f495;&#xff09; 目录 三、CSS的元素显示模式 3.1 什么是元素显示模式 3.2 块元素 3.3 行内元素 3.4 行内块元素 3.5 元素…

马斯克预言:下一代Grok 3模型将需10万Nvidia H100 GPU进行训练|TodayAI

特斯拉首席执行官兼xAI创始人埃隆马斯克对人工通用智能&#xff08;AGI&#xff09;的发展做出了一些大胆的预测&#xff0c;并讨论了AI行业面临的挑战。他预测&#xff0c;AGI可能在明年或2026年之前超越人类智能&#xff0c;但训练AGI将需要极大数量的处理器&#xff0c;进而…