文章目录
- 前言
- 一、题目
- 二、模块初始化
- 三、代码实现
- interrupt.h:
- interrupt.c:
- main.h:
- main.c:
- 四、完成效果
- 五、总结
前言
无
一、题目
二、模块初始化
1.LCD这里不用配置,直接使用提供的资源包就行
2.KEY, 四个按键IO口都要配置,分别是PB0, PB1,PB2,PA0依次是B0,B1,B2,B3不要弄错了
3.LED:开启PC8,PC9,PD2输出模式就行了。
4.定时器:TIM3(按键消抖定时器):PSC:80-1,ARR:10000-1,TIM2CH2(PA1PWM占空比以及频率):PSC:100-1,ARR:200-1,TIM4(低高频转换时间控制,LED闪烁控制,统计数据时间控制):PSC:80-1,ARR:9999,TIM17输入捕获采集。
三、代码实现
bsp组中共有:
interrupt.h:
#ifndef __INTERRUPT_H__
#define __INTERRUPT_H__
#include "main.h"
#include "stdbool.h"
struct keys
{
bool key_sta;
unsigned char judge_sta;
unsigned int key_time;
bool single_flag;
bool long_flag;
};
#endif
interrupt.c:
#include "interrupt.h"
#include "tim.h"
struct keys key[4] = {0, 0, 0, 0, 0};
extern unsigned char PA1changingFlag;
extern unsigned int PA1changingTick;
extern unsigned int PA1Fre;
extern unsigned char PA1OutputMode;
extern unsigned int N;
extern float V;
float VHregister = 0.0;
unsigned int VHcompareTick = 0;
float VLregister = 0.0;
unsigned int VLcompareTick = 0;
extern float MH;
extern float ML;
extern unsigned char LED;
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)
{
if(htim->Instance == TIM3)
{
key[0].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0);
key[1].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1);
key[2].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_2);
key[3].key_sta = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
for(unsigned char i = 0; i < 4; i++)
{
switch(key[i].judge_sta)
{
case 0:
{
if(key[i].key_sta == 0)
{
key[i].judge_sta = 1;
key[i].key_time = 0;
}
break;
}
case 1:
{
if(key[i].key_sta == 0)
{
key[i].judge_sta = 2;
}
else
{
key[i].judge_sta = 0;
}
break;
}
case 2:
{
if(key[i].key_sta == 1)
{
key[i].judge_sta = 0;
if(key[i].key_time <= 200)
{
key[i].single_flag = 1;
}
else if(key[i].key_time > 200)
{
key[i].long_flag = 1;
}
}
else
{
key[i].key_time++;
}
break;
}
}
}
}
if(htim->Instance ==TIM4)
{
if(PA1changingFlag == 1)
{
if(PA1OutputMode == LOWFRE)
{
PA1changingTick++;
if(PA1changingTick % 10 == 0)
LED ^= 0x02;
PA1Fre += 8;
__HAL_TIM_SET_PRESCALER(&htim2, (80000000 / 200 / PA1Fre) - 1);
if(PA1changingTick >= 500)
{
PA1changingTick = 0;
PA1changingFlag = 0;
PA1OutputMode = HIGHFRE;
LED &= ~(0x02);
N++;
}
}
else if(PA1OutputMode == HIGHFRE)
{
PA1changingTick++;
if(PA1changingTick % 10 == 0)
LED ^= 0x02;
PA1Fre -= 8;
__HAL_TIM_SET_PRESCALER(&htim2, (80000000 / 200 / PA1Fre) - 1);
if(PA1changingTick >= 500)
{
PA1changingTick = 0;
PA1changingFlag = 0;
PA1OutputMode = LOWFRE;
LED &= ~(0x02);
N++;
}
}
}
if(PA1OutputMode == HIGHFRE)
{
if(VHcompareTick >= 200)
{
if((unsigned int)(VHregister * 10) == (unsigned int)(V * 10))
{
MH = VHregister;
VHcompareTick = 0;
}
}
else
{
VHcompareTick++;
if((unsigned int)(VHregister * 10) != (unsigned int)(V * 10))
{
VHcompareTick = 0;
}
}
VHregister = V;
}
else if(PA1OutputMode == LOWFRE)
{
if(VLcompareTick >= 200)
{
if((unsigned int)(VLregister * 10) == (unsigned int)(V * 10))
{
ML = VLregister;
VLcompareTick = 0;
}
}
else
{
VLcompareTick++;
if((unsigned int)(VLregister * 10) != (unsigned int)(V * 10))
{
VLcompareTick = 0;
}
}
VLregister = V;
}
}
}
/* Captured Values */
uint32_t uwIC1Value1_T17CH1 = 0;
uint32_t uwIC1Value2_T17CH1 = 0;
uint32_t uwHighCapture_T17CH1 = 0;
uint32_t uwLowCapture_T17CH1 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T17CH1 = 0;
/* Frequency Value */
uint32_t uwFrequency_T17CH1 = 0;
float uwDuty_T17CH1 = 0;
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
{
if(uhCaptureIndex_T17CH1 == 0)
{
/* Get the 1st Input Capture value */
uwIC1Value1_T17CH1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_FALLING);
uhCaptureIndex_T17CH1 = 1;
}
else if(uhCaptureIndex_T17CH1 == 1)
{
/* Get the 2nd Input Capture value */
uwIC1Value2_T17CH1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);
__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_RISING);
/* Capture computation */
if (uwIC1Value2_T17CH1 > uwIC1Value1_T17CH1)
{
uwHighCapture_T17CH1 = (uwIC1Value2_T17CH1 - uwIC1Value1_T17CH1);
}
else if (uwIC1Value2_T17CH1 < uwIC1Value1_T17CH1)
{
/* 0xFFFF is max TIM1_CCRx value */
uwHighCapture_T17CH1 = ((0xFFFF - uwIC1Value1_T17CH1) + uwIC1Value2_T17CH1) + 1;
}
else
{
/* If capture values are equal, we have reached the limit of frequency
measures */
Error_Handler();
}
uhCaptureIndex_T17CH1 = 2;
uwIC1Value1_T17CH1 = uwIC1Value2_T17CH1;
/* Frequency computation: for this example TIMx (TIM1) is clocked by
APB2Clk */
// uwFrequency_T17CH1 = 1000000 / uwDiffCapture_T17CH1;
// uhCaptureIndex_T17CH1 = 0;
}
else if(uhCaptureIndex_T17CH1 == 2)
{
uwIC1Value2_T17CH1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);
/* Capture computation */
if (uwIC1Value2_T17CH1 > uwIC1Value1_T17CH1)
{
uwLowCapture_T17CH1 = (uwIC1Value2_T17CH1 - uwIC1Value1_T17CH1);
}
else if (uwIC1Value2_T17CH1 < uwIC1Value1_T17CH1)
{
/* 0xFFFF is max TIM1_CCRx value */
uwLowCapture_T17CH1 = ((0xFFFF - uwIC1Value1_T17CH1) + uwIC1Value2_T17CH1) + 1;
}
else
{
/* If capture values are equal, we have reached the limit of frequency
measures */
Error_Handler();
}
uwFrequency_T17CH1 = 1000000 / (uwHighCapture_T17CH1 + uwLowCapture_T17CH1);
uwDuty_T17CH1 = uwHighCapture_T17CH1 * 100.0 / (uwLowCapture_T17CH1 + uwHighCapture_T17CH1);
uhCaptureIndex_T17CH1 = 0;
}
}
}
main.h:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.h
* @brief : Header for main.c file.
* This file contains the common defines of the application.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __MAIN_H
#define __MAIN_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32g4xx_hal.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Exported types ------------------------------------------------------------*/
/* USER CODE BEGIN ET */
/* USER CODE END ET */
/* Exported constants --------------------------------------------------------*/
/* USER CODE BEGIN EC */
/* USER CODE END EC */
/* Exported macro ------------------------------------------------------------*/
/* USER CODE BEGIN EM */
/* USER CODE END EM */
/* Exported functions prototypes ---------------------------------------------*/
void Error_Handler(void);
/* USER CODE BEGIN EFP */
/* USER CODE END EFP */
/* Private defines -----------------------------------------------------------*/
/* USER CODE BEGIN Private defines */
#define KA ((85.0 - 10.0)/(3.0 - 1.0))
#define DATA 0
#define PARA 1
#define RECD 2
#define LOWFRE 0
#define HIGHFRE 1
/* USER CODE END Private defines */
#ifdef __cplusplus
}
#endif
#endif /* __MAIN_H */
main.c:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "tim.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "lcd.h"
#include "interrupt.h"
#include "stdio.h"
#include "badc.h"
#include "led.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
extern uint32_t uwFrequency_T17CH1;
extern float uwDuty_T17CH1;
char text[30];
extern struct keys key[4];
float R37Volt;
float PA1Duty;//(0.0%, 100.0%)
unsigned int PA1Fre = 4000; //8hz / 10ms
unsigned char PA1changingFlag;
unsigned int PA1changingTick;
unsigned char PA1OutputMode;
unsigned char DisplayMode;
unsigned int R = 1;
unsigned int K = 1;
unsigned int Rtemp = 1, Ktemp = 1;
unsigned int N = 0;
float V = 0;
float MH;
float ML;
unsigned char SettingRKIndex;
unsigned char PA1DutyLock;
unsigned char LED;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void LCD_Disp(void);
void DisposeKey(void);
float DutyReturn(float R37Volt);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ADC2_Init();
MX_TIM2_Init();
MX_TIM17_Init();
MX_TIM3_Init();
MX_TIM4_Init();
/* USER CODE BEGIN 2 */
LCD_Init();
LCD_Clear(Black);
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
HAL_TIM_IC_Start_IT(&htim17, TIM_CHANNEL_1);
HAL_TIM_Base_Start_IT(&htim3);
HAL_TIM_Base_Start_IT(&htim4);
getADC(&hadc2);
R37Volt = getADC(&hadc2) * 3.3 / 4096;
PA1Duty = DutyReturn(R37Volt);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_2, (unsigned int)(PA1Duty * 2));
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2);
LED_Disp(0x00);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
R37Volt = getADC(&hadc2) * 3.3 / 4096;
PA1Duty = DutyReturn(R37Volt);
V = uwFrequency_T17CH1 * 2 * 3.14 * R / (100.0 * K);
if(PA1DutyLock == 0)
{
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_2, (unsigned int)(PA1Duty * 2));
}
DisposeKey();
if(DisplayMode == DATA)
{
LED |= 0x01;
}
else
{
LED &= ~0x01;
}
if(PA1DutyLock == 1)
{
LED |= (0x01 << 2);
}
else
{
LED &= ~(0x01 << 2);
}
LED_Disp(LED);
LCD_Disp();
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
RCC_OscInitStruct.PLL.PLLN = 20;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void DisposeKey(void)
{
if(key[0].single_flag)
{
DisplayMode++;
if(DisplayMode == RECD)
{
R = Rtemp;
K = Ktemp;
}
else if(DisplayMode == PARA)
{
SettingRKIndex = 0;
}
DisplayMode %= 3;
LCD_Clear(Black);
key[0].single_flag = 0;
}
if(key[1].single_flag)
{
if(DisplayMode == DATA)
{
if(PA1changingFlag == 0)
{
PA1changingFlag = 1;
PA1changingTick = 0;
}
}
else if(DisplayMode == PARA)
{
SettingRKIndex = !SettingRKIndex;
}
key[1].single_flag = 0;
}
if(key[2].single_flag)
{
if(DisplayMode == PARA)
{
if(SettingRKIndex == 0)
{
Rtemp++;
if(Rtemp == 11)
Rtemp = 1;
}
else if(SettingRKIndex == 1)
{
Ktemp++;
if(Ktemp == 11)
Ktemp = 1;
}
}
key[2].single_flag = 0;
}
if(key[3].single_flag)
{
if(DisplayMode == PARA)
{
if(SettingRKIndex == 0)
{
Rtemp--;
if(Rtemp == 0)
Rtemp = 10;
}
else if(SettingRKIndex == 1)
{
Ktemp--;
if(Ktemp == 0)
Ktemp = 10;
}
}
else if(DisplayMode == DATA)
{
if(PA1DutyLock)
{
PA1DutyLock = 0;
}
}
key[3].single_flag = 0;
}
if(key[3].long_flag)
{
if(DisplayMode == DATA)
{
PA1DutyLock = 1;
}
key[3].long_flag = 0;
}
}
void LCD_Disp(void)
{
if(DisplayMode == DATA)
{
LCD_DisplayStringLine(Line1, " DATA");
if(PA1OutputMode == HIGHFRE)
{
LCD_DisplayStringLine(Line3, " M=H");
}
else if(PA1OutputMode == LOWFRE)
{
LCD_DisplayStringLine(Line3, " M=L");
}
sprintf(text, " P=%02d%%", (unsigned char)(uwDuty_T17CH1 + 0.5)); //ËÄÉáÎåÈë
LCD_DisplayStringLine(Line4, text);
sprintf(text, " V=%.1f ", V);
LCD_DisplayStringLine(Line5, text);
}
else if(DisplayMode == PARA)
{
LCD_DisplayStringLine(Line1, " PARA");
sprintf(text, " R=%d ", Rtemp);
LCD_DisplayStringLine(Line3, text);
sprintf(text, " K=%d ", Ktemp);
LCD_DisplayStringLine(Line4, text);
}
else if(DisplayMode == RECD)
{
LCD_DisplayStringLine(Line1, " RECD");
sprintf(text, " N=%d ", N);
LCD_DisplayStringLine(Line3, text);
sprintf(text, " MH=%.1f ", MH);
LCD_DisplayStringLine(Line4, text);
sprintf(text, " ML=%.1f ", ML);
LCD_DisplayStringLine(Line5, text);
}
}
float DutyReturn(float R37Volt)
{
float Duty = 0;
if(R37Volt < 1.0)
{
Duty = 10.0;
}
else if(R37Volt >= 1.0 && R37Volt < 3.0)
{
Duty = KA * (R37Volt - 1) + 10.0;
}
else if(R37Volt >= 3.0)
{
Duty = 85.0;
}
return Duty;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
四、完成效果
蓝桥杯嵌入式第十四届省赛试题实现效果
五、总结
其实说本篇文章只是为了存放我的代码,所以看不懂很正常。
十四届省赛代码