机器学习深度学习——多层感知机的从零开始实现

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——多层感知机
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

为了与之前的softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集。

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

多层感知机的从零开始实现

  • 初始化模型参数
  • 激活函数
  • 模型
  • 损失函数
  • 训练
  • 预测

初始化模型参数

数据集的每个图像由28×28=784个灰度像素值组成。所有图像分为10个类别。
忽略像素间的空间结构,我们可以将每个图像视为具有784个输入特征和10个类的简单分类数据集。
首先,我们将实现一个具有单隐藏层的多层感知机,它包含256个隐藏单元。注意,我们可以将这两个变量都视为超参数。通常,我们选择2的若干次幂作为层的宽度。因为内存在硬件的分配和寻址方式,这么做往往可以在计算上更高效。
我们用几个张量来表示我们的参数。注意,对于每一层我们都要记录一个权重矩阵和一个偏置向量。并要为这些参数的梯度分配内存。

num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]

激活函数

这里就不用内置的了,自己实现一下:

def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

模型

既然忽略了空间结构,那就直接用reshape将每个二维图像转换为一个长度为num_inputs的向量:

def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)  # "@"表示矩阵乘法
    return (H@W2 + b2)

损失函数

之前已经从零实现过了softmax函数,这里直接用内置函数计算softmax和交叉熵损失(为什么要计算这两个,之前在softmax的简洁实现中曾经证明过)

loss = nn.CrossEntropyLoss(reduction='none')

训练

训练过程和softmax一样,直接调用d2l的train_ch3函数就行了,将迭代周期数设为10,学习率设为0.1。

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

预测

对模型进行评估,我们在测试数据上应用这个模型。

d2l.predict_ch3(net, test_iter)
d2l.plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/53172.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux Day03

一、基础命令(在Linux Day02基础上补充) 1.10 find find 搜索路径 -name 文件名 按文件名字搜索 find 搜索路径 -cmin -n 搜索过去n分钟内修改的文件 find 搜索路径 -ctime -n搜索过去n分钟内修改的文件 1)按文件名字 2)按时间 1.11 grep 在文件中过…

【Ajax】笔记-同源策略

同源策略(Same-Origin Policy),是浏览器的一种安全策略 同源(即url相同):协议、域名、端口号 必须完全相同。(请求是来自同一个服务) 跨域:违背了同源策略,即跨域。 ajax请求是遵循…

软件测试面试题——接口自动化测试怎么做?

面试过程中,也问了该问题,以下是自己的回答: 接口自动化测试,之前做过,第一个版本是用jmeter 做的,1 主要是将P0级别的功能接口梳理出来,根据业务流抓包获取相关接口,并在jmeter中跑…

BUU CODE REVIEW 1

BUU CODE REVIEW 1 考点&#xff1a;PHP变量引用 源码直接给了 <?phphighlight_file(__FILE__);class BUU {public $correct "";public $input "";public function __destruct() {try {$this->correct base64_encode(uniqid());if($this->c…

回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 Matlab实…

git stash clear清空本地暂存代码

git stash clear清空本地暂存代码 git stash 或者 git stash list 查看本地暂存的代码。 清除本地暂存的代码修改&#xff1a; git stash clear git回退代码仓库版本_git回退到之前的版本会影响本地代码嘛_zhangphil的博客-CSDN博客git回退代码版本_git回退到之前的版本会影…

没有软件测试经验,怎样面试测试工作?

纸上得来终觉浅&#xff0c;所有的面试经验都是要自己去体验&#xff0c;他人说来的都是他人的经验。 同样&#xff0c;每个公司&#xff0c;面对的面试官都会有不同的问题&#xff0c;当然这些问题可能会大同小异&#xff0c;但是也需要自己总结得出&#xff0c;这样的经验不…

文件上传到远程服务器

文件上传 一、上传文件到本地 package com.ruoyi.system.knowledgebase;import com.ruoyi.common.annotation.Anonymous; import com.ruoyi.common.core.domain.AjaxResult; import com.ruoyi.system.domain.SzKnowledge; import com.ruoyi.system.service.ISzKnowledgeServi…

基于物联网、视频监控与AI视觉技术的智慧电厂项目智能化改造方案

一、项目背景 现阶段&#xff0c;电力行业很多企业都在部署摄像头对电力巡检现场状况进行远程监控&#xff0c;但是存在人工查看费时、疲劳、出现问题无法第一时间发现等管理弊端&#xff0c;而且安全事件主要依靠人工经验判断分析、管控&#xff0c;效率十分低下。 为解决上述…

vue生命周期的传统写法和setup语法糖写法

&#x1f642;博主&#xff1a;小猫娃来啦 &#x1f642;文章核心&#xff1a;vue生命周期的传统写法和setup语法糖写法 文章目录 setup语法糖设计目的Vue2 与Vue3的生命周期对比vue3钩子函数beforeCreated和created被封装传统写法和语法糖写法的对比 setup语法糖设计目的 <…

容器部署jenkins定时构建于本地时间不一致

1. Dockerfile FROM jenkins/jenkins:2.411-jdk11 USER root #以下生成密钥方式为旧格式&#xff0c;因为新格式暂不能被"Publish over SSH--->Jenkins SSH Key"功能识别 RUN ssh-keygen -q -m PEM -t rsa -b 2048 -N -f /root/.ssh/id_rsa ADD ./apache-maven…

【Boost搜索引擎项目】

文章目录 一、项目流程二、项目展示 一、项目流程 1.编写数据去标签模块–parser.cc 将去标签之后干净文档以title\3content\3url\ntitle\3content\3url\n格式放入同一文件中。 2.建立索引模块–index.hpp 读取处理好的行文本文件进行分词、权重计算等操作&#xff0c;在内存中…

在linux上面部署activemq

1、下载 网址&#xff1a;ActiveMQ 注意&#xff1a;新版本5.17起 要求jdk11, 5.16兼容jdk8, 所以&#xff0c;确保已经安装 java11 或以上的版本 这里安装较新版&#xff1a;5.18.2&#xff0c;已经安装了java17 如何安装jdk17,请详见我的另一篇文章&#xff1a;linux…

Leetcode-每日一题【剑指 Offer II 075. 数组相对排序】

题目 给定两个数组&#xff0c;arr1 和 arr2&#xff0c; arr2 中的元素各不相同 arr2 中的每个元素都出现在 arr1 中 对 arr1 中的元素进行排序&#xff0c;使 arr1 中项的相对顺序和 arr2 中的相对顺序相同。未在 arr2 中出现过的元素需要按照升序放在 arr1 的末尾。 示例&…

AI For Engineers 线上参会指南

AI For Engineers 线上参会指南 欢迎您报名参加 AI For Engineers&#xff1a;工程师 AI 全球会议&#xff0c;为了让各位参会者参会体验更佳&#xff0c;更好地利用本次会议收获更多。Altair 特别为各位准备了线上参会指南&#xff0c;一起来看看吧~ 会议时间&#xff1a;20…

组合模式——树形结构的处理

1、简介 1.1、概述 树形结构在软件中随处可见&#xff0c;例如操作系统中的目录结构、应用软件中的菜单、办公系统中的公司组织结构等。如何运用面向对象的方式来处理这种树形结构是组合模式需要解决的问题。组合模式通过一种巧妙的设计方案使得用户可以一致性地处理整个树形…

第3章 DOM

文档&#xff1a;DOM中的“D” 如果没有document&#xff08;文档&#xff09;, DOM也就无从谈起。当创建了一个网页并把它加载到Web浏览器中时&#xff0c;DOM就在幕后悄然而生。它把你编写的网页文档转换为一个文档对象。 对象&#xff1a;DOM中的“O” js中的对象分为三种…

森林中的兔子(力扣)数学思维 JAVA

森林中有未知数量的兔子。提问其中若干只兔子 “还有多少只兔子与你&#xff08;指被提问的兔子&#xff09;颜色相同?” &#xff0c;将答案收集到一个整数数组 answers 中&#xff0c;其中 answers[i] 是第 i 只兔子的回答。 给你数组 answers &#xff0c;返回森林中兔子的…

第5集丨webpack 江湖 —— 项目发布 和 source map

目录 一、webpack项目发布1.1 新增发布(build)命令1.2 优化js和图片文件的存放路径1.3 执行1.4 效果 二、clean-webpack-plugin插件2.1 安装2.2 配置2.3 执行 三、source map3.1 配置3.2 生成的source map文件 四、定义符4.1 配置4.2 使用 五、工程附件汇总5.1 webpack.config.…

【Python数据分析】Python常用内置函数(二)

&#x1f389;欢迎来到Python专栏~Python常用内置函数&#xff08;二&#xff09; ☆* o(≧▽≦)o *☆嗨~我是小夏与酒&#x1f379; ✨博客主页&#xff1a;小夏与酒的博客 &#x1f388;该系列文章专栏&#xff1a;Python学习专栏 文章作者技术和水平有限&#xff0c;如果文…