【进阶六】Python实现SDVRPTW常见求解算法——自适应大邻域算法(ALNS)

基于python语言,采用经典自适应大邻域算法(ALNS)对 带硬时间窗的需求拆分车辆路径规划问题(SDVRPTW) 进行求解。

目录

  • 往期优质资源
  • 1. 适用场景
  • 2. 代码调整
    • 2.1 需求拆分
    • 2.2 需求拆分后的服务时长取值问题
  • 3. 求解结果
  • 4. 代码片段
  • 参考

往期优质资源


经过一年多的创作,目前已经成熟的代码列举如下,如有需求可私信联系,表明需要的 **问题与算法**,原创不宜,有偿获取。
VRP问题GAACOALNSDEDPSOQDPSOTSSA
CVRP
VRPTW
MDVRP
MDHVRP
MDHVRPTW
SDVRP
SDVRPTW

1. 适用场景

  • 求解SDVRPTW
  • 车辆类型单一
  • 车辆容量小于部分需求节点需求
  • 单一车辆基地
  • 带硬时间窗

2. 代码调整


2.1 需求拆分


与SDVRP问题相比,SDVRPTW问题不仅允许客户需求大于车辆载重,而且考虑了客户节点的时间窗约束。为了使得每个客户的需求得到满足,必须派遣一辆或多辆车辆在规定时间窗内对客户进行服务。对于需求节点的拆分,这里依然采取先验拆分策略,本文采用文献[1]提出的先验分割策略,表述如下:

(1)20/10/5/1拆分规则

  • m20 =max{ m ∈ Z + ∪ { 0 } ∣ 0.20 Q m < = D i m\in Z^+ \cup \{0\} | 0.20Qm <= D_i mZ+{0}∣0.20Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.20 Q m 20   m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.20Qm_{20}~ mZ+{0}∣0.10Qm<=Di0.20Qm20  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.20Qm_{20}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.20Qm200.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.20Qm_{20}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.20Qm200.10Qm100.05Qm5 }

(2)25/10/5/1拆分规则

  • m25 =max{ m ∈ Z + ∪ { 0 } ∣ 0.25 Q m < = D i m\in Z^+ \cup \{0\} | 0.25Qm <= D_i mZ+{0}∣0.25Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.25 Q m 25   m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.25Qm_{25}~ mZ+{0}∣0.10Qm<=Di0.25Qm25  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.25Qm_{25}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.25Qm250.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.25Qm_{25}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.25Qm250.10Qm100.05Qm5 }

在实现过程中,对于需求超过车辆容量的客户必须进行需求拆分,而对于未超过车辆容量的客户可以拆分也可以不拆分,这里设置了参数比例进行限制。

2.2 需求拆分后的服务时长取值问题


节点的服务时长会影响车辆的行进时间,进而会影响与节点时间窗的匹配问题。一般来说,节点的服务时长与需求量成正比关系,在进行节点需求拆分后,新节点的需求量降低,其服务时长理应也降低。但从标准数据集来看,各需求节点的服务时长均采用同一数值。因此本文在代码实现过程中也采用固定值,不考虑新节点服务时长的变化。当然,如有需要,也可以设置单位货物的服务时长,根据拆分后节点的具体需求量设置相应的服务时长。


3. 求解结果


(1)收敛曲线
在这里插入图片描述

(2)车辆路径
在这里插入图片描述

(3)输出内容

在这里插入图片描述


4. 代码片段


(1)数据结构

import math
import random
import numpy as np
import copy
import xlsxwriter
import matplotlib.pyplot as plt
import csv
import time
# 数据结构:解
class Sol():
    def __init__(self):
        self.obj=None # 目标函数值
        self.node_no_seq=[] # 解的编码
        self.route_list=[] # 解的解码
        self.timetable_list=[] # 车辆访问各点的时间
        self.route_distance_list = None
# 数据结构:需求节点
class Node():
    def __init__(self):
        self.id=0 # 节点id
        self.x_coord=0 # 节点平面横坐标
        self.y_coord=0  # 节点平面纵坐标
        self.demand=0 # 节点需求
        self.start_time=0 # 节点开始服务时间
        self.end_time=1440 # 节点结束服务时间
        self.service_time=0 # 单次服务时长
        self.vehicle_speed = 0 # 行驶速度
# 数据结构:车场节点
class Depot():
    def __init__(self):
        self.id=0 # 节点id
        self.x_coord=0 # 节点平面横坐标
        self.y_coord=0  # 节点平面纵坐标
        self.start_time=0 # 节点开始服务时间
        self.end_time=1440 # 节点结束服务时间
        self.v_speed = 0 # 行驶速度
        self.v_cap = 80 # 车辆容量
# 数据结构:全局参数
class Model():
    def __init__(self):
        self.best_sol=None # 全局最优解
        self.sol_list=[] # 解的集合
        self.demand_dict = {}  # 需求节点集合
        self.depot = None  # 车场节点集合
        self.demand_id_list = [] # 需求节点id集合
        self.distance_matrix = {}  # 距离矩阵
        self.time_matrix = {}  # 时间矩阵
        self.number_of_demands = 0 # 需求点数量
        self.demand_id_list_ = []  # 经先验需求分割后的节点集合
        self.demand_dict_ = {}  # 需求分割后的节点需求集合
        self.distance_matrix_ = {}  # 原始节点id间的距离矩阵
        self.time_matrix_ = {}  # 原始节点id间的时间矩阵
        self.mapping = {}  # 需求分割前后的节点对应关系
        self.split_rate = 0.5 # 控制需求分割的比例(需求超出车辆容量的除外)

        self.rand_d_max = 0.4  # 随机破坏最大破坏比例
        self.rand_d_min = 0.1  # 随机破坏最小破坏比例
        self.worst_d_min = 5  # 最坏值破坏最少破坏数量
        self.worst_d_max = 20  # 最坏值破坏最多破坏数量
        self.regret_n = 5  # 后悔值破坏数量
        self.r1 = 30  # 一等得分值
        self.r2 = 18  # 二等得分值
        self.r3 = 12  # 三等得分值
        self.rho = 0.6  # 权重衰减比例
        self.d_weight = np.ones(2) * 10  # 破坏算子权重
        self.d_select = np.zeros(2)  # 破坏算子选择次数
        self.d_score = np.zeros(2)  # 破坏算子得分
        self.d_history_select = np.zeros(2)  # 破坏算子累计选择次数
        self.d_history_score = np.zeros(2)  # 破坏算子累计得分
        self.r_weight = np.ones(3) * 10  # 修复算子权重
        self.r_select = np.zeros(3)  # 修复算子选择次数
        self.r_score = np.zeros(3)  # 修复算子得分
        self.r_history_select = np.zeros(3)  # 修复算子累计选择次数
        self.r_history_score = np.zeros(3)  # 修复算子累计得分

(2)距离矩阵

# 读取csv文件
def readCSVFile(demand_file,depot_file,model):
    with open(demand_file,'r') as f:
        demand_reader=csv.DictReader(f)
        for row in demand_reader:
            node = Node()
            node.id = int(row['id'])
            node.x_coord = float(row['x_coord'])
            node.y_coord = float(row['y_coord'])
            node.demand = float(row['demand'])
            node.start_time=float(row['start_time'])
            node.end_time=float(row['end_time'])
            node.service_time=float(row['service_time'])
            model.demand_dict[node.id] = node
            model.demand_id_list.append(node.id)
        model.number_of_demands=len(model.demand_id_list)

    with open(depot_file, 'r') as f:
        depot_reader = csv.DictReader(f)
        for row in depot_reader:
            depot = Depot()
            depot.id = row['id']
            depot.x_coord = float(row['x_coord'])
            depot.y_coord = float(row['y_coord'])
            depot.start_time=float(row['start_time'])
            depot.end_time=float(row['end_time'])
            depot.v_speed = float(row['v_speed'])
            depot.v_cap = float(row['v_cap'])
            model.depot = depot
# 初始化参数:计算距离矩阵时间矩阵
def calDistanceTimeMatrix(model):
    for i in range(len(model.demand_id_list)):
        from_node_id = model.demand_id_list[i]
        for j in range(len(model.demand_id_list)):
            to_node_id = model.demand_id_list[j]
            dist = math.sqrt((model.demand_dict[from_node_id].x_coord - model.demand_dict[to_node_id].x_coord) ** 2
                             + (model.demand_dict[from_node_id].y_coord - model.demand_dict[to_node_id].y_coord) ** 2)
            model.distance_matrix[from_node_id, to_node_id] = dist
            model.time_matrix[from_node_id,to_node_id] = math.ceil(dist/model.depot.v_speed)
        dist = math.sqrt((model.demand_dict[from_node_id].x_coord - model.depot.x_coord) ** 2 +
                         (model.demand_dict[from_node_id].y_coord - model.depot.y_coord) ** 2)
        model.distance_matrix[from_node_id, model.depot.id] = dist
        model.distance_matrix[model.depot.id, from_node_id] = dist
        model.time_matrix[from_node_id,model.depot.id] = math.ceil(dist/model.depot.v_speed)
        model.time_matrix[model.depot.id,from_node_id] = math.ceil(dist/model.depot.v_speed)

(3)邻域搜索

# 随机破坏
def createRandomDestory(model):
    d=random.uniform(model.rand_d_min,model.rand_d_max)
    return random.sample(model.demand_id_list_,int(d*(len(model.demand_id_list_)-1)))

# 随机修复
def createRandomRepair(remove_list,model,sol):
    unassigned_node_no_seq = remove_list
    assigned_node_no_seq = [node_no for node_no in sol.node_no_seq if node_no not in remove_list]
    # insert
    for node_no in unassigned_node_no_seq:
        index=random.randint(0,len(assigned_node_no_seq)-1)
        assigned_node_no_seq.insert(index,node_no)
    new_sol=Sol()
    new_sol.node_no_seq=copy.deepcopy(assigned_node_no_seq)
    new_sol.timetable_list, new_sol.obj, new_sol.route_distance,new_sol.route_list=calObj(assigned_node_no_seq,model)
    return new_sol

参考

【1】 A novel approach to solve the split delivery vehicle routing problem

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/531611.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CADMap3D2024 2023下载地址及安装教程

CAD Map 3D是由Autodesk开发的一款专业的地图制作和GIS&#xff08;地理信息系统&#xff09;软件。它是AutoCAD系列软件的一个扩展&#xff0c;提供了一系列特定于地理数据的工具和功能。 CAD Map 3D主要用于处理和管理与地理空间相关的数据&#xff0c;在地图制作、城市规划…

洗地机哪个品牌质量好?四大高口碑优质款式直入

如今&#xff0c;保持家居地面清洁整洁已成为生活中的重要任务。在这方面&#xff0c;洗地机作为一种高效的清洁工具备受青睐。然而&#xff0c;市场上的洗地机种类繁多&#xff0c;选择起来常常让人头疼。所以&#xff0c;哪个品牌的洗地机质量更好呢&#xff1f;以下是几款备…

Java 继承

1 继承 1.1 为什么需要继承 Java中使用类对现实世界中实体来进行描述&#xff0c;类经过实例化之后的产物对象&#xff0c;则可以用来表示现实中的实体&#xff0c;但是 现实世界错综复杂&#xff0c;事物之间可能会存在一些关联&#xff0c;那在设计程序是就需要考虑 比如&…

论文笔记:面向实体的多模态对齐与融合网络假新闻检测

整理了2022TMM期刊 Entity-Oriented Multi-Modal Alignment and Fusion Network for Fake News Detection&#xff09;论文的阅读笔记 背景模型改进的动态路由算法Cross-Modal Fusion 实验 背景 现有的假新闻方法对多模态特征进行各种跨模态交互和融合&#xff0c;在检测常见假…

刷题之Leetcode203题(超级详细)

203.移除链表元素 力扣题目链接(opens new window)https://leetcode.cn/problems/remove-linked-list-elements/ 题意&#xff1a;删除链表中等于给定值 val 的所有节点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,6,3,4,5,6], val 6 输出&#xff1a;[1,2,3,4,5] …

C++ stl容器vector的认识与简单使用

目录 前言&#xff1a; 本篇文档图片引用自&#xff1a;https://cplusplus.com/reference/vector/vector/ 1.vector的结构 2.迭代器类型 3.构造函数 4.迭代器 反向迭代器遍历 const迭代器 5.容量 maxsize shrink_to_fit reverse resize 6.修改 insert和erase 7.…

心跳机制原理学习

心跳机制 应用场景&#xff1a; 在长连接下&#xff0c;有可能很长一段时间都没有数据往来。理论上说&#xff0c;这个连接是一直保持连接的&#xff0c;但是实际情况中&#xff0c;如果中间节点出现什么故障是难以知道的。更要命的是&#xff0c;有的节点&#xff08;防火墙…

4月6号排序算法(2)

堆排序 讲堆排序之前我们需要了解几个定义 什么叫做最大堆&#xff0c;父亲节点&#xff0c;以及孩子节点 将根节点最大的堆叫做最大堆或大根堆&#xff0c;根节点最小的堆叫做最小堆或小根堆。 每个节点都是它的子树的根节点的父亲 。 反过来每个节点都是它父亲的孩子 。 …

Matplotlib实现数据可视化

Matplotlib是Python中应用较为广泛的绘图工具之一&#xff0c;首次发布于2007年。它在函数设计上参考了MATLAB&#xff0c;因此名字以"Mat"开头&#xff0c;中间的"plot"代表绘图功能&#xff0c;结尾的"lib"表示它是一个集合。Matplotlib支持众…

HarmonyOS实战开发-短时任务

介绍 本示例主要展示后台任务中的短时任务。 通过ohos.resourceschedule.backgroundTaskManager &#xff0c;ohos.app.ability.quickFixManager 等接口实现应用热更新的方式去展现短时任务机制。 效果预览 使用说明 1.安装本应用之前&#xff0c;先编译好未签名的应用包&a…

【MPI并行程序】完美解决Attempting to use an MPI routine before initializing MPI

文章目录 错误原因解决方案 最近在写并行程序&#xff0c;犯了一个小错误&#xff0c;记录一下&#xff0c;以防止以后再犯。 Attempting to use an MPI routine before initializing MPI&#xff08;在初始化 MPI 之前尝试使用 MPI 例程&#xff09; 错误原因 这个错误通常是因…

MySQL学习笔记2——基础操作

基础操作 一、增删改查1、添加数据2、删除数据3、修改数据4、查询语句 二、主键三、外键和连接1、外键2、连接 一、增删改查 1、添加数据 INSERT INTO 表名[(字段名[,字段名]…)] VALUES (值的列表); --[]表示里面的内容可选添加数据分为插入数据记录和插入查询结果 插入数据…

【Vuforia+Unity】AR判断当前平台获取点击/触摸坐标点选中识别的二维码跳转网页

实现了&#xff1a;【VuforiaUnity】判断当前平台获取点击/触摸坐标点选中识别的二维码跳转网页 using UnityEngine; using Vuforia; public class BarcodeScanner : MonoBehaviour { public TMPro.TextMeshProUGUI barcodeAsText; string platformNum""; privat…

Java研学-RBAC权限控制(一)

一 权限控制 1 介绍 RBAC&#xff08;Role-Based Access Control&#xff0c;基于角色的访问控制&#xff09;是一种流行的权限控制策略&#xff0c;用于实现复杂系统的安全访问管理。它通过将权限与角色相关联&#xff0c;而不是直接与用户相关联&#xff0c;从而简化了权限管…

《QT实用小工具·二十三》 Ntp校时类

1、概述 源码放在文章末尾 该项目实现了 Ntp校时类 &#xff0c;包含如下功能&#xff1a; 可设置Ntp服务器IP地址。 推荐用默认的阿里云时间服务器 ntp1.aliyun.com 收到时间信号发出。 时间精确到秒。 下面是demo演示&#xff1a; 项目部分代码如下&#xff1a; #if…

组态王与美国罗克韦尔AB PLC之间无线通讯方案详解

组态王与多台美国罗克韦尔AB PLC间的无线通信测试需要用到以下设备&#xff1a; 三菱PLC型号&#xff1a;FX5u 2台 上位机&#xff1a;组态王6.55 1台 达泰欧美系PLC无线通讯终端——DTD418MB 3块 主从关系&#xff1a;1主2从 通讯接口&#xff1a;RJ45接口 供电&…

传统前端 JS 开发者有福了

大家好&#xff0c;春天的百花绽放之际&#xff0c;各个行业也迎来了各自的新生与挑战。有的继续沉下心来夯实基础&#xff0c;有的大力发展出海业务&#xff0c;又或者通过顶级促销套路天女散花般地贩卖高仿保时捷……这厢 Mendix 各位技术小伙伴继续紧跟时代脉搏&#xff0c;…

【linux】拓展知识-linux图形界面(GUI 程序)、X11介绍

linux图形界面 Linux 本身是没有图形化界面的&#xff0c;linux只是一个基于命令行的操作系统&#xff0c;所谓的图形化界面系统只不过中 Linux 下的应用程序。没有图形界面linux还是linux&#xff0c;很多装linux的WEB服务器就根本不装X服务器。 这一点和 Windows 不一样。W…

制作一个RISC-V的操作系统十-Trap和Exception(流 mtvec mepc mcause mtval mstatus trap完整流程)

文章目录 流mtvecmepcmcausemtvalmstatustrap 初始化trap的top half&#xff08;硬件完成&#xff09;trap的bottom half&#xff08;软件完成&#xff09;从trap返回代码实现 流 控制流&#xff1a;程序控制的执行流 trap分为中断和异常 mtvec base&#xff1a;存储trap入…

python|sort_values()排序

sort_value()可以用来对值&#xff08;比如说年龄&#xff09;进行排序 根据 ‘Age’ 列进行升序排序&#xff0c;如果 ‘Age’ 相同则根据 ‘Name’ 列进行降序排序 df_sorted_multi df.sort_values(by[Age, Name], ascending[True, False]) print(df_sorted_multi)