线性代数的学习和整理2:线性代数的基础知识(整理ing)

目录

0 写在前面的话

网上推荐的线性代数的课程

1 线性代数和矩阵的各种概念

1.1 各种逻辑图

2 关于线性代数入门的各种灵魂发问

2.1 什么是线性,什么是线性相关 ? 为什么叫线性变换? 为什么叫线性代数?

2.2 线性代数是人造的,还是自然的

2.3 线性代数的核心是什么

3 整理网上总结一些 关于直击线性代数本质的 观点

3.1 矩阵是列向量的一种简化书写

 3.2 行列式是什么

3.3  特征值和特征向量是什么?

矩阵的维数

矩阵的基底

矩阵的列向量

矩阵的平直概念

矩阵的乘法的映射图

矩阵的秩

矩阵的乘法具有不可交换性

矩阵的模

行列式的计算


0 写在前面的话

     为什么先总结一些EXCEL计算矩阵的工具性知识,回头再来问线性代数的概念。但是还是那个问题:

  1. 虽然一般的学习路径是需要先了解基础知识才能运用。
  2. 但是先能用到觉得有用,然后再去提问,这样的反馈循环能促进人的学习,我更适合后者,能用到了再回过头来学习更好
  3. 然后下面还是要回顾到线性代数的本质,因为以前学过,但是现在全忘了,还是因为没有理解导致的,这次尽量能先学懂,再考虑去学习各自计算技巧

 2 关于线性代数入门的各种灵魂发问:什么是线性,什么是线性相关 ? 为什么叫线性变换? 为什么叫线性代数?

感觉学一门课的时候知道它在干啥为什么要研究这些问题真的很重要。

2.1 什么是线性

线性,linear,顾名思义,就是“直线的”,"直线型的",“类似直线的”。

2.1.1 从普通的数之间的函数/方程/曲线来说(对标,数组/向量之间的函数)

线性的函数/方程/曲线

  • 也就是形如y=ax 或 y=ax+b 甚至  y=ax1+ax2+.....+axn 这种形式的都可以叫线性
  • 指的是所有未知项/自变量的次数都是1,比如 x+2y,而不是 x^2+cosx这种
  • 是个正比例的函数,也就是随着x增大,Y也增大
  • 因为在平面坐标系里,这就是一条直线,
  • 另外一种定义

  • 引自线性到底是什么意思? - 知乎匿了,以下内容别太较真,就当图一乐。线性,linear,顾名思义,就是“直线的”。或者应该说,“类似直线…https://www.zhihu.com/question/20084968/answer/2538009027?utm_id=0

  • 如果定义 f(x,y)=x+2y,则 f(x,y)=const (某一常数) 将在二维平面中画出一条 直线。
  • 而定义 g(x,y)=x^2+siny,则 g(x,y)=const (某一常数) 在二维平面中画出的是一条曲线。
  • 线性方程/函数,指的是所有未知项/自变量的次数都是1,比如 x+2y,而不是 x^2+siny.

  • 换个角度,如果在平面之外引入第三维坐标z 并令 z=f(x,y),则 函数关系式 z=x+2y 等价于三个坐标间的方程关系 x+2y-z = 0。
  • 不难看到,当 f(x,y) 中各坐标都翻2倍时,为使该式仍然成立,z 同样也会翻2倍。
  • 从图像的角度也好理解,x+2y-z = 0 ∩ x+2y = 0 在三维空间的平面上截出一条经过原点的 直线。
  • 其中,(x,y) 是该直线在xOy平面投影的坐标,z 则是相应位置的“高度”;因此上述结论说明的是,高度” z 和其投影向量长度 ||(x,y)|| 成正比——其实就是直线的性质。

2.2  线性空间

线性空间指的是,有一个集合由被称为“向量”的“定长坐标序列”凑到一块组成,然后在这个集合中向量之间,定义上两种运算“加法”和“数乘”,二者合起来(所组成的代数结构) 称为线性空间,当然,还有一点额外要求,那就是——

该集合中的任意向量都可以合法地执行这两种运算,结果还在这个集合里。

(也就是不存在说,我的集合里只有{1,2,3},所以我可以算1+2=3,但不能算2+3,因为我的集合里没5;所有对象都应尽在掌控,不能我拿已知东西做运算,结果冒出来个未知的…换个角度说,如果那样,那我不如把新算出来的那个玩意也包含到我的研究对象里来,毕竟本来也是想研究“所有同类”)

简而言之,线性空间满足两个“运算封闭性”,对所定义的“加法”和“数乘”,假设 α 和 β 是从空间里随便拿出来的两个,则:

γ=α+β 也在空间里(集合中)

η=kα 也在空间里(集合中)

那这和直线有什么关系?第二个数乘运算倒还有点直线的意思…可加法运算呢?用首位相接的形式可以来解释,2个分段向量可以等价于1个总向量

线性变换,指的是线性空间上,满足

T(α+β)=T(α)+T(β)

T(kα)=kT(α)

的映射。

这跟直线有什么关系?有。

这种映射把空间里原来的 直线,仍然映射成 直线,而不会“扭曲”成曲线;同时保持原点不动(原点动的就叫“仿射变换”了…)

具体来说——原来空间中等距离的点,如果是“线性变换”作用在它们上之后,依然等距离(但是可以等比例缩放,即,变长的变长同一倍数,缩短的缩短同一倍数…以及:旋转的旋转同一角度) 推荐观看三蓝一棕(3Blue1Brown)的线性代数科普课程,在b站就可以找到。

2.3 线性变换和背后的道理

  • 线性相关
  • 线性变换
  1. 行之间,交换
  2. 某行乘以倍数
  3. 某行乘倍数+到其他行
  4. 列之间,交换
  5. 某列乘以倍数
  6. 某列乘倍数+到其他列

2.4 线性相关

2.5 线性代数

2.2 线性代数是人造的,还是自然的

  • 从我的层面,我只能理解到,这是数学家们发明的一个精巧的工具,用来认识世界和解决问题的数学工具,思考工具,计算工具
  • 笛卡尔的坐标系是一种线性坐标系
  • 而线性代数,在努力摆脱坐标系的影响

2.3 线性代数的核心是什么

  • 核心是线性空间,及其线性映射
  • 矩阵其实是线性变换的一个额外生造出来的辅助工具,一个类似 y=ax的参数a的多维参数

3 整理网上总结一些 关于直击线性代数本质的 观点

3.1 矩阵是列向量的一种简化书写

  • 矩阵是把多个列向量写在一起的简化形式
  • 也就是说
  1. 以下是等价的:
  2. 矩阵相加,等于多个列向量分别相加
  3. 矩阵相乘,等于多个列向量分别相乘

 3.2 行列式是什么  detA   |A|

  • 行列式是方阵的,体积变化的系数?
  • 一个创造出来的数字 现在:线性变换后测度的值。
  • 而如果说行列式为零,那么就是说至少有两个向量在变换之后,共线了。
  • 降维了!让人不由自主的想起来二向箔。、
  • 行列式为负值代表着翻面了,相对位置发生了调换

3.3  特征值和特征向量是什么?

直接说现在:特征向量这个块往哪个方向进行了拉伸,各个方向拉伸了几倍。这也让人很容易理解为什么,行列式的值就是特征值的乘积。

特征向量也代表了一些良好的性质,即这些线在线性变换后没有发生方向的偏移(可以逆转)只是长度发生了改变。

4 线性代数的基本概念

为啥学数学?为啥学线代? - 知乎大问题:学数学有啥用?学线性代数有啥用? 小问题:专业、数学、计算机编程,该学哪个? 计算化学和其它计算xx一样,最重要的不是对编程语言的掌握,而是把一个化学问题构造成一个可计算的数学问题吧?这里面最重…https://zhuanlan.zhihu.com/p/586540676

一般的数学,研究数字之间的关系,有些数字用变量代替

而线性代数,研究数组--向量之间的关系 y=ax 其中 y,a,x都是数组,不只是a是数组

RGB颜色就是一种用数组来表达颜色的方式,而不是用数字

A,B两个同阶同秩N阵,看上去结构一样,但两厢相乘,在做在右,地位差别巨大。

在左,你就是基,是空间的根本,是坐标系,是往哪去、能到哪的定海神针,是如来佛手;在右,你就只是乾坤已定后数量的选择,你是翻十个跟头,还是翻十一个(都出不了如来佛掌不是)?无论右侧有多少变,折腾的结果都在左侧框定的空间里。

矩阵相乘,在左在右,意义不同 - 知乎补2(20220102) 一下原文只从代数的角度解释了矩阵在左在右的不同含义导致的矩阵乘法不可交换,本补从左右矩阵数组(列向量)的不同实体性质再来解释一下。 线代与函数的最大区别在于函数是研究数字之间的关系的,线…https://zhuanlan.zhihu.com/p/166080173矩阵乘法的本质是什么? - 知乎矩阵的乘法,本质是一种运动。我这里提供一个我认为具有启发性的模型,来阐述为什么矩阵乘法是运动。1 线…https://www.zhihu.com/question/21351965/answer/204058188

 一直不解,为什么如此定义矩阵的乘法,为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效? - 知乎大家讲了这么多有的没的,我给大家举个“矩阵”在现实世界中用到的例子:==============================…https://www.zhihu.com/question/30898332/answer/2687307391

矩阵的本质是旋转和缩放

  • 矩阵里的数字0
  • 矩阵里的数字1,表示不进行缩放
  • 矩阵里的数字2等,表示缩放
  • 矩阵里的数字-3  表示缩放-3倍,并且反向
  • 矩阵里的数字的位置
  • 矩阵拆分为列向量

比如下面这个矩阵,单位矩阵如果放左边,就是表示对矩阵的第1行元素*1,对第2行元素*1,其实就是什么都不做。

 1  0 

 0  1 

4.1 线性空间

  1. 向量组成的一个集合
  2. 这个集合,以及定义在这个集合上的代数运算,就是线性空间
  3. 这个线性空间是不是对标,普通的单个数字运算的一般 整数和函数的那个运算空间?

4.2 矩阵的 基 / 基底

  • (a1,a2)是2维的,对应2个基底e1,e2
  • (a1,a2,a3)是3维的,对应3个基底e1,e2
  • (a1,a2,a3... ... an)是n维的, 对应n个基底e1,e2.....en
  • 比如一个向量(3,2,5) 就可以认为是分别在3个基上的长度/伸缩度
  1. 第1个基,(1,0,0) 上的长度/伸缩度是3,
  2. 第2个基,(0,1,0) 上的长度/伸缩度是2,
  3. 第3个基,(0,0,1) 上的长度/伸缩度是5,

4.2 矩阵的 基 / 基底 是可以改变的

先讲讲基与维数。一个线性空间必定存在基,线性空间的任意元素都可以由基线性表出,且表出方式唯一,这个唯一的表出的组合就是这个元素在这个基下的坐标。线性表出且表出方式唯一的充分必要条件是什么?这里又引出了线性无关以及极大线性无关组的概念,极大线性无关组元素的个数又能引出秩的概念。由秩又能引出维度的概念。以上这些概念都是为了刻画线性空间的基与维数而衍生出来的,并不是凭空出现无中生有的。

下面再谈谈同构。线性空间千千万,应如何研究呢?同构就是这样一个强大的概念,任何维数相同的线性空间之间是同构的,空间的维数是简单而深刻的,简单的自然数居然能够刻画空间最本质的性质。借助于同构,要研究任意一个n维线性空间,只要研究Rⁿ就行了。

n维线性空间作为一个整体,我们自然想到能不能先研究它的局部性质?所以自然而然的导出了子空间的概念以及整个空间的直和分解。直和分解要求把整个空间分解为两两不交的子空间之和,通过研究各个简单的子空间的性质,从而得出整个空间的性质。


4.2 线性映射

核空间


 

1)线性映射的核空间。这是线性映射的一个重要的概念,什么是线性映射的核空间呢?简单的说,就是映射到零的原像的集合,记作KER。用正比例函数来类比,显然当k不等于0时,它的核是零空间,当k为零时,它的核空间是整个R。

有时候需要判定一个线性映射是不是单射,按照定义来还是没那么好证的,这时我们可以从它的核来判定,只要它的核是零,那么这个线性映射必然是单射。

2)线性映射的像。当自变量取遍整个定义域时,它的像的取值范围成为一个线性子空间,称为像空间,记作IM。

3)线性映射的矩阵表示。一个抽象的线性映射应如何'解析'的表达出来呢?这个表达式写出来就是一个矩阵,且这个矩阵依赖于基的选择。也就是说在不同的基下,线性映射有不同的矩阵。基有无穷个,相应的矩阵有无穷个。这就给用矩阵研究线性映射带来了麻烦。

幸好我们有相似矩阵。同一个线性映射在不同的基下的矩阵是相似关系,相似不变量有秩,行列式,迹,特征值,特征多项式等。所以可以通过相似矩阵来研究线性映射的秩,行列式,迹,特征值,特征多项式等性质。

线性映射的矩阵有无穷多,那么这其中有哪些是值得关注的呢?第一就是标准正交基下的矩阵了,这也是最常见的。

然而一个线性映射的矩阵在标准正交基下可能特别复杂,所以需要选择一组特殊的基,让它的矩阵在这个基下有最简单的矩阵表示。如果存在这样的基,使得线性映射的矩阵为对角矩阵,则称这个线性映射可对角化。

然而是不是所有线性映射都可以对角化呢,遗憾的是,并不是。那么就要问,如果一个线性映射不能对角化,那么它的最简矩阵是什么?这个问题的答案是若尔当标准型。可以证明,在复数域上,任何线性映射都存在唯一的若尔当标准型。

4.2 矩阵的维数

  • (a1,a2)是2维的
  • (a1,a2,a3)是3维的
  • (a1,a2,a3... ... an)是n维的

矩阵的列向量

  • 矩阵的每一列向量
  • 都代表这个方向的基底ei 走到了对应列向量的位置。
  • 比如

矩阵的平直概念

即矩阵需要时线性增长的意思把

比如矩阵10,10个矩阵不能缩小为90,而必须是100

矩阵的乘法的映射图

矩阵的秩

矩阵的乘法具有不可交换性

  • A*B != B*A
  • A左乘*B != A右乘*B
  • 假设A!=0, B!=0, 但是可能存在 A*B=0
  • 假设A!=0,  但是可能存在 A*A=0
  • 如果已知 A*B=C,那么 B= A-*C ,但是B != C*A-

线性代数,矩阵,属于代数学,不属于几何学,

想理解矩阵乘法的几何意义有点难

矩阵的模

网上推荐的线性代数的课程

  • 一般推荐的都是国外的课程和书
  • 首推这个mit的线性代数

麻省理工学院 - MIT - 线性代数(我愿称之为线性代数教程天花板)_哔哩哔哩_bilibili麻省理工学院 - MIT - 线性代数(我愿称之为线性代数教程天花板)共计35条视频,包括:1.01方程组的几何解释、2.02矩阵消元、3.03乘法和逆矩阵等,UP主更多精彩视频,请关注UP账号。https://www.bilibili.com/video/BV16Z4y1U7oU/?spm_id_from=333.337.search-card.all.click&vd_source=5fa6d2958ae880d9550a17f8050fd5ed

-UP主汉语配音-【线性代数的本质】合集-转载于3Blue1Brown官方双语】_哔哩哔哩_bilibili-UP主汉语配音-【线性代数的本质】合集-转载于3Blue1Brown官方双语】共计15条视频,包括:00-序言、01-向量究竟是什么、02-线性组合.张成的空间与基等,UP主更多精彩视频,请关注UP账号。https://www.bilibili.com/video/BV1ib411t7YR/?spm_id_from=333.337.search-card.all.click&vd_source=5fa6d2958ae880d9550a17f8050fd5ed

理解矩阵(一)——孟岩https://www.douban.com/note/779302982/?_i=07066238wuC-1A8分钟带你彻底弄懂《线性代数》 - 知乎这篇文章写得真好,解开了我的迷雾,另外,感觉想要真正理解线性代数,还是需要理解线性代数的几何意义 原文链接: https://mp.weixin.qq.com/s?__biz=MjM5NDQ0NjM5Mg==&mid=2650426885&idx=1&sn=a196…https://zhuanlan.zhihu.com/p/535053668線代啟示錄 | I seek not to know the answers, but to understand the questions.I seek not to know the answers, but to understand the questions.https://ccjou.wordpress.com/

线性代数的本质(转发) - 知乎线性代数的本质 在机器学习领域,线性代数无处不在,偶尔在网上看到这篇文章,觉得很好,就转过来了,希望能对大家有所启示。 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。 …https://zhuanlan.zhihu.com/p/362462011

1 线性代数和矩阵的各种概念

  • 线性代数
  • 向量
  • 矩阵
  • 行列数
  • 什么是线性?什么是线性变化
  • 等等

1.1 各种逻辑图

下图是网上找的思维导图。

9 行列式的计算

行列式 det

行列式是矩阵的模吗?

怎么在一个晚上搞定线性代数? - 知乎

 

参考《线性代数应该这样学》

mit 的那本只有英文本,中文版没找到

 这个人写的 

可能是全网最好的《概率统计》期末速成,2小时不到冲刺60分,概率论与数理统计_哔哩哔哩_bilibili视频中题目电子版看置顶链接, 视频播放量 4797330、弹幕量 48237、点赞数 173810、投硬币枚数 138658、收藏人数 202312、转发人数 116784, 视频作者 数学强国, 作者简介 数学强国公众号,相关视频:20题就能过概率统计期末,快速复习概率,就一个“背”就完了,4小时根本讲不完《概率论统计》/纯板书/《概率论与数理统计》速成/不挂科/考前复习/临时抱佛脚/哈工大学长,当你在提瓦特学习概率论与数理统计……,【概率论与数理统计】3小时不挂|概率统计|概统,《概率论与数理统计》4小时速成课(突击课,适合大学数学期末考试、期中考试、补考、重修、专升本,考试不挂科),概率论与数理统计 可视化详解学习!| 第一讲 | 50分钟学习 随机事件及其概率,【5小时套路数值分析】基础 · 期末考试讲解(或许已完结),【梨米特】全网最适合大学生学习的《概率论与数理统计》课,概率统计知识点全解析(适合大一学习、考研复习基础),我 可 太 喜 欢 期 末 周 了!,《概率统计总复习笔记》配套视频https://www.bilibili.com/video/BV1TJ411y7Zp/?spm_id_from=333.337.search-card.all.click&vd_source=a28ad5eb568571b2770fcd9ad5c7bff0

二叉树和概率的

【鸢尾花书系列】数学要素-Chapter20概率 - 知乎20概率从杨辉三角到古典概率模型 杨辉三角可谓是算数、代数、几何、数列、概率的完美结合体。沿着帕斯卡和费马的思路,本章从杨辉三角入手来和大家探讨概率论的核心思想。 本章内容是概率论中最基础的概念,本章通…https://zhuanlan.zhihu.com/p/634124909小狗贝贝Baby - 知乎

线性代数的

【The Art of Linear Algebra】全网超火的线性代数图解?!(提供PDF下载) - 知乎最近Github上的开源线性代数图解火遍全网! 仅仅十二张图片,让Gilbert Strang教授为其作序,内容十分精悍! 内容Content1.理解矩阵一一4个视角2.向量乘以向量一一2个视角3矩阵乘以向量一一2个视角4.矩阵乘以矩阵…https://zhuanlan.zhihu.com/p/644417773

【鸢尾花书系列】矩阵力量-Chapter2向量运算(一) - 知乎2.1 向量:多面手几何视角如图 1所示,平面上, 向量是有方向的线段线段的长度代表向量的大小箭头代表向量的方向 向量 a 的起点 (initial point) 是原点 O,向量的终点 (terminal point) 是 A如果向量的起点和终点…https://zhuanlan.zhihu.com/p/639339957

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/53128.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

搞活系列-Java NIO之偏偏不用buffer.flip()会出现什么问题?

最近看博客又看到了Java NIO相关的博客,其中有讲解NIO和传统IO关于文件复制的文章,看到了如下的代码: /**** channel用例* 基于channel的文件复制*/Testpublic void fileCopyByChannel(){try {FileInputStream fileInputStream new FileInpu…

黑苹果如何在macOS Sonoma中驱动博通网卡

准备资源(百度:黑果魏叔 下载) 资源包中包含:AirportBrcmFixup.kext/IOSkywalkFamily.kext/IO80211FamilyLegacy.kext/OpenCore-Patcher 使用方法: 1.将 csr-active-config 设置为 03080000 全选代码 复制 2.在 …

如何进行软件回归测试

什么是软件回归测试,如何进行回归测试,进行回归测试时有哪些常用的方法? 回归测试是指修改了旧代码后,重新进行测试以确认修改没有引入新的错误或导致其他代码产生错误的一种测试方法。回归测试是指重复以前的全部或部分的相同功能…

2,认识N(logN)的排序【p3】

认识N( logN} 的排序 2.1归并排序2.1.1代码实现归并排序2.1.1.1自己c实现归并排序2.1.1.2gptc实现归并排序2.1.1.3总结2.1.1.4比较行为 2.1.2归并排序使用master公式2.1.3归并排序的扩展2.1.3.1小和问题2.1.3.2逆序对问题 2.2快排、荷兰国旗问题2.2.1问题一2.2.2问题二(荷兰国旗…

数电基础知识学习笔记

文章目录: 一:逻辑门 1.逻辑门电路的分类 1.1 按逻辑(逻辑门) 1.1.1 逻辑定义 1.1.2 常见数字电路相关符号 1.1.3 电路图表示 1.1.4 逻辑门电路图像符号 1.2 按电路结构 1.3 按功能特点 2.高低电平的含义 3.常见的门…

C#实现数据库数据变化监测(sqlservermysql)

监测数据库表数据变化,可实现数据库同步(一主一从(双机备份),一主多从(总部数据库,工厂1,工厂2,工厂数据合并到总部数据)) sqlserver 启用数据库…

uni-app在小米手机上运行【步骤细节】

注意细节重点: 1.手机使用数据线与电脑连接,手机连接模式必须是传输文件模式 2.手机必须打开开发者模式 3.打开开发者模式后,仔细浏览并调整USB调试权限,重点打开USB是否允许安装按钮!!! 操作步…

黄东旭:The Future of Database,掀开 TiDB Serverless 的引擎盖

在 PingCAP 用户峰会 2023 上, PingCAP 联合创始人兼 CTO 黄东旭 分享了“The Future of Database”为主题的演讲, 介绍了 TiDB Serverless 作为未来一代数据库的核心设计理念。黄东旭 通过分享个人经历和示例,强调了数据库的服务化而非服务化…

020 - STM32学习笔记 - Fatfs文件系统(二) - 移植与测试

020 - STM32学习笔记 - Fatfs文件系统(二) - 移植与测试 上节学习了FatFs文件系统的相关知识,这节内容继续学习在STM32上如何移植FatFs文件系统,并且实现文件的创建、读、写与删除等功能。各位看官觉得还行的话点点赞&#xff0c…

Spring Tool Suite 4

参考:Spring tool suite4 安装及配置_springtoolsuite4_猿界零零七的博客-CSDN博客 下载:Spring | Tools 将下载的JAR进行解压两次,直至解压出contents中的sts 双击启动 第一次打开需要指定工作区文件夹 配置Maven的config 安装插件

(笔记)Layout知识点汇总(积累量变)

Layout知识点汇总 布线1、电容电阻中间不要穿线2、线宽不要超过焊盘,引出后加粗 拐角1、layout:钝角走线 线宽间距1、注意和差分信号线的距离 焊盘1、焊盘中心出线2、线连接到焊盘中心 布局1、时钟线包地处理2、音频的左右声道,加粗&#xff…

【多模态】18、ViLD | 通过对视觉和语言知识蒸馏来实现开集目标检测(ICLR2022)

文章目录 一、背景二、方法2.1 对新类别的定位 Localization2.2 使用 cropped regions 进行开放词汇检测2.3 ViLD 三、效果 论文:Open-vocabulary Object Detection via Vision and Language Knowledge Distillation 代码:https://github.com/tensorflo…

C语言每日一题之整数求二进制1的个数

今天分享一道题目&#xff0c;用三种方法来求解 二进制1的个数 方法1 我们的十进制除10和取余数就可以得到我们每一位的数字&#xff0c;那我们的二进制也可 以 #include<stdio.h> int num_find_1(unsigned int n) {int count 0;while (n){if (1 n % 2){count;}n / 2…

element中tabs组件,click事件点击拿到当前item的所有数据

话不多说&#xff0c;直接上代码&#xff1a; 添加一个:value&#xff0c;然后在用JSON.stringify(item)转一下就可以了&#xff0c;这样就会存在$attrs.value这个里面了。 接着在点击事件里面获取使用el.$attrs.value&#xff0c;注意这里在拿到这个值时&#xff0c;再用JSON…

事务的隔离级别以及传播机制的详细讲解

1.为什么需要事务&#xff1f; 事务就是将一组操作封装成一个执行单元&#xff0c;要么全部执行成功&#xff0c;要么全部执行失败 ⽐如转账分为两个操作&#xff1a; 第⼀步操作&#xff1a;A 账户 -100 元第⼆步操作&#xff1a;B 账户 100 元 如果没有事务&#xff0c;第⼀…

SQL-每日一题【1173. 即时食物配送 I】

题目 配送表: Delivery 如果顾客期望的配送日期和下单日期相同&#xff0c;则该订单称为 「即时订单」&#xff0c;否则称为「计划订单」。 查询即时订单所占的百分比&#xff0c; 保留两位小数。 查询结果如下所示。 示例 1: 解题思路 1.题目要求我们查询出顾客期望的配送日…

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现SO-CNN-LS…

Ubuntu20.04安装Autoware.universe并与Awsim联调

文章目录 引言一、安装依赖1.1 安装git1.2 克隆Autoware到本地1.3 自动安装相关依赖1.4 安装显卡驱动1.5 安装ROS2 Galactic1.6 安装ros2_dev_tools1.7 安装rmw_implementation1.8 安装pacmod1.9 安装autoware_core1.10 安装autoware universe dependencies1.11 安装pre_commit…

论文阅读-BotPercent: Estimating Twitter Bot Populations from Groups to Crowds

目录 摘要 引言 方法 数据集 BotPercent架构 实验结果 活跃用户中的Bot数量 Bot Population among Comment Sections Bot Participation in Content Moderation Votes Bot Population in Different Countries’ Politics 论文链接&#xff1a;https://arxiv.org/pdf/23…

解密低价正规渠道的来源:影视会员肯德基点餐直充api接口

话费充值 接口已经整合移动、联通、电信三网话费充值渠道。话费可以说是全民所需&#xff0c;对于平台引流&#xff0c;增强平台日活跃度可以提供不小的帮助。 肯德基在线点餐 接口整合了各大城市的肯德基门店&#xff0c;支持门店选择&#xff0c;在线点餐 提前点餐领取&a…