[开源] 基于transformer的时间序列预测模型python代码

分享一下基于transformer的时间序列预测模型python代码,给大家,记得点赞哦

#!/usr/bin/env python
# coding: 帅帅的笔者

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import time
import math
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

# Set random seeds for reproducibility
torch.manual_seed(0)
np.random.seed(0)

# Hyperparameters
input_window = 10
output_window = 1
batch_size = 250
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
epochs = 100
lr = 0.00005

# Load data
df = pd.read_csv("data1.csv", parse_dates=["value"], index_col=[0], encoding='gbk')
data = np.array(df['value']).reshape(-1, 1)

# Normalize data
scaler = MinMaxScaler(feature_range=(-1, 1))
data_normalized = scaler.fit_transform(data)

# Split the data into train and validation sets
train_ratio = 0.828
train_size = int(len(data) * train_ratio)
val_size = len(data) - train_size
train_data_normalized = data_normalized[:train_size]
val_data_normalized = data_normalized[train_size:]

# Define the Transformer model
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEncoding, self).__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return x + self.pe[:x.size(0), :]

class TransAm(nn.Module):
    def __init__(self, feature_size=250, num_layers=1, dropout=0.1):
        super(TransAm, self).__init__()
        self.model_type = 'Transformer'
        self.src_mask = None
        self.pos_encoder = PositionalEncoding(feature_size)
        self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=10, dropout=dropout)
        self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
        self.decoder = nn.Linear(feature_size, 1)
        self.init_weights()

    def init_weights(self):
        initrange = 0.1
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, src):
        if self.src_mask is None or self.src_mask.size(0) != len(src):
            device = src.device
            mask = self._generate_square_subsequent_mask(len(src)).to(device)
            self.src_mask = mask

        src = self.pos_encoder(src)
        output = self.transformer_encoder(src, self.src_mask)
        output = self.decoder(output)
        return output

    def _generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask



# Create the dataset for the model
def create_inout_sequences(data, input_window, output_window):
    inout_seq = []
    length = len(data)
    for i in range(length - input_window - output_window):
        train_seq = data[i:i+input_window]
        train_label = data[i+input_window:i+input_window+output_window]
        inout_seq.append((train_seq, train_label))
    return inout_seq

train_data = create_inout_sequences(train_data_normalized, input_window, output_window)
val_data = create_inout_sequences(val_data_normalized, input_window, output_window)

# Train the model
model = TransAm().to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)

def train(train_data):
    model.train()
    total_loss = 0.
    for i in range(0, len(train_data) - 1, batch_size):
        data, targets = torch.stack([torch.tensor(item[0], dtype=torch.float32) for item in train_data[i:i+batch_size]]).to(device), torch.stack([torch.tensor(item[1], dtype=torch.float32) for item in train_data[i:i+batch_size]]).to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, targets)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
        optimizer.step()
        total_loss += loss.item()
    return total_loss / len(train_data)

def validate(val_data):
    model.eval()
    total_loss = 0.
    with torch.no_grad():
        for i in range(0, len(val_data) - 1, batch_size):
            data, targets = torch.stack([torch.tensor(item[0], dtype=torch.float32) for item in val_data[i:i+batch_size]]).to(device), torch.stack([torch.tensor(item[1], dtype=torch.float32) for item in val_data[i:i+batch_size]]).to(device)
            output = model(data)
            loss = criterion(output, targets)
            total_loss += loss.item()
    return total_loss / len(val_data)




best_val_loss = float("inf")
best_model = None

for epoch in range(1, epochs + 1):
    epoch_start_time = time.time()
    train_loss = train(train_data)
    val_loss = validate(val_data)
    scheduler.step()

    if val_loss < best_val_loss:
        best_val_loss = val_loss
        best_model = model

# Predict and denormalize the data
def predict(model, dataset):
    model.eval()
    predictions = []
    actuals = []
    with torch.no_grad():
        for i in range(len(dataset)):
            data, target = dataset[i]
            data = torch.tensor(data, dtype=torch.float32).to(device)
            output = model(data.unsqueeze(0))
            prediction = output.squeeze().cpu().numpy()
            predictions.append(prediction)
            actuals.append(target)
    return np.array(predictions), np.array(actuals)

predictions, actuals = predict(best_model, val_data)
print("Predictions shape:", predictions.shape)
print("Actuals shape:", actuals.shape)

predictions_denorm = scaler.inverse_transform(predictions)
actuals_denorm = scaler.inverse_transform(actuals.flatten().reshape(-1, 1))

# Plot the results
plt.plot(predictions_denorm, label='Predictions')
plt.plot(actuals_denorm, label='Actuals')
plt.legend(['Predictions', 'Actuals'])
plt.xlabel('Timestep')
plt.ylabel('High')
plt.legend()
plt.show()






更多时间序列预测代码:时间序列预测算法全集合--深度学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/530116.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

BoostCompass(数据准备预处理模块)

阅读导航 一、网页数据下载二、编写数据去标签与数据清洗的模块 Parser✅boost 开发库的安装1. 基本思路2. 详细讲解&#xff08;1&#xff09;程序递归遍历目录&#xff0c;收集所有HTML文件的路径&#xff08;2&#xff09;对每个HTML文件进行解析&#xff0c;提取出文档标题…

【HTML】简单制作一个3D动态粒子效果的时空隧道

目录 前言 开始 HTML部分 CSS部分 效果图 总结 前言 无需多言&#xff0c;本文将详细介绍一段HTML&#xff0c;具体内容如下&#xff1a; 开始 首先新建文件夹&#xff0c;创建两个文本文档&#xff0c;其中HTML的文件名改为[index.html]&#xff0c;CSS的文件名改为[Bab…

【CPA考试】2024注册会计师报名照片尺寸要求解读及手机拍照方法

随着2024年注册会计师考试的临近&#xff0c;众多会计专业人士和学生都开始准备报名参加这一行业的重要考试&#xff0c;报名时间为4月8日至4月30日。报名过程中&#xff0c;一张符合要求的证件照是必不可少的。本文将为您详细解读2024年注册会计师考试报名照片的尺寸要求&…

Kafka基础/1

Kafka 概念 Kafka 是一个分布式的流媒体平台。 应用&#xff1a;消息系统、日志收集、用户行为追踪、流式处理 特点&#xff1a;高吞吐量、消息持久化、高可靠性、高扩展性 术语&#xff1a; broker&#xff1a;Kafka 的服务器&#xff0c;Kafka 当中每一台服务器&#xf…

网络安全---Packet Tracer - 配置扩展 ACL

一、实验目的 在Windows环境下利用Cisco Packet Tracer进行 配置防火墙操作。 二、实验环境 1.Windows10、Cisco Packet Tracer 8.2 2.相关的环境设置 在最初的时候&#xff0c;我们已经得到了搭建好的拓扑模型&#xff0c;利用已经搭建好的拓扑模型&#xff0c;进行后续的…

SOLIDWORKS如何新建定义材质库

SolidWorks材质库中包含了大量的材料选项&#xff0c;涵盖了金属、塑料、橡胶、复合材料等各种类型&#xff0c;每种材料都有详细的特性参数。用户可以根据设计需求&#xff0c;在材质库中选择合适的材料&#xff0c;从而更好地满足设计要求。在有限元分析中&#xff0c;需要附…

【架构师】-- 成长路线图

成长为软件架构师不是一件容易的事&#xff0c;这篇文章列举了架构师需要学习的技术储备&#xff0c;给出了成为软件架构师的路线图&#xff0c;帮助有志于在架构领域成长的同学可以明确学习的方向。原文&#xff1a;Master Plan for becoming a Software Architect[1] 软件架…

easyExcel - 动态复杂表头的编写

目录 前言一、情景介绍二、问题分析三、代码实现方式一&#xff1a;head 设置方式二&#xff1a;模板导出方式三&#xff1a;自定义工具类 前言 Java-easyExcel入门教程&#xff1a;https://blog.csdn.net/xhmico/article/details/134714025 之前有介绍过如何使用 easyExcel&…

LeetCode_144(二叉树前序遍历)

1.递归 public List<Integer> preorderTraversal(TreeNode root) {List<Integer> res new ArrayList<>();accessTree(root,res);return res;}public void accessTree(TreeNode root,List<Integer>res){if(root null){return;}res.add(root.val);acce…

Redis 八种常用数据类型常用命令和应用场景

5 种基础数据类型&#xff1a;String&#xff08;字符串&#xff09;、List&#xff08;列表&#xff09;、Set&#xff08;集合&#xff09;、Hash&#xff08;散列&#xff09;、Zset&#xff08;有序集合&#xff09;。 3 种特殊数据类型&#xff1a;HyperLogLog&#xff0…

计算机视觉——Python OpenCV BGR转HSV

这里将介绍如何使用 OpenCV 与 Python 来作彩色影像转HSV(RGB to HSV 或 BGR to HSV)&#xff0c;在写 Python 影像处理程序时常会用到 OpenCV cvtColor 作颜色空间转换的功能&#xff0c;接下来介绍怎么使用 Python 搭配 OpenCV 模块来进行 RGB/BGR 转 HSV 彩色转HSV空间。 H…

03 Php学习:echo 、 print 、EOF

echo 和 print 在 PHP 中有两个基本的输出方式&#xff1a; echo 和 print。 echo 和 print 区别: echo - 可以输出一个或多个字符串print - 只允许输出一个字符串&#xff0c;返回值总为 1 注意&#xff1a;echo 输出的速度比 print 快&#xff0c; echo 没有返回值&…

VS Code开发插件使用 pnpm 打包异常的解决姿势

前言 刚刚准备发一个插件&#xff0c;发现用 pnpm 打出一个本地插件包直接扑街了。 这里只聚焦错误问题的解决&#xff0c;不是发插件的教程。。 聊点背景信息&#xff0c;vscode 的插件命令行的是 vsce 这个模块提供的 cli 能力去做的 环境 pnpm : 8.x 错误截图 本地打…

C++ Virtual详解

Virtual是C OO机制中很重要的一个关键字。只要是学过C的人都知道在类Base中加了Virtual关键字的函数就是虚拟函数&#xff08;例如函数print&#xff09;&#xff0c;于是在Base的派生类Derived中就可以通过重写虚拟函数来实现对基类虚拟函数的覆盖。当基类Base的指针point指向…

LRU算法的实现

目录 一&#xff0c;LRU算法 二&#xff0c;使用场景 三&#xff0c;LRU算法实现 一&#xff0c;LRU算法 LRU-least recently used-最近最少使用算法&#xff0c;是一种内存数据淘汰策略&#xff0c;使用常见是当内存不足时&#xff0c;需要淘汰最近最少使用的数据。LRU常用…

Mac 安装 brew brew cask 遇到的问题以及解决办法

安装Homebrew和Homebrew Cask是在Mac上管理软件包的常用方法。虽然大多数情况下安装这两个工具是比较简单的&#xff0c;但有时候也可能遇到一些问题。下面是一些常见的问题以及解决办法&#xff1a; 问题1&#xff1a;无法安装Homebrew 解决办法&#xff1a; 1.确保你的Mac已连…

4月9日学习记录

[GXYCTF 2019]禁止套娃 涉及知识点&#xff1a;git泄露&#xff0c;无参数RCE 打开环境&#xff0c;源码什么的都没有&#xff0c;扫描后台看看 扫描发现存在git泄露 用githack下载查看得到一串源码 <?php include "flag.php"; echo "flag在哪里呢&#…

REST API实战演练之JavaScript使用Rest API

咱们前面讲了一下如何创建REST API 假期别闲着&#xff1a;REST API实战演练之创建Rest API-CSDN博客 又讲了java客户端如何使用REST API 假期别闲着&#xff1a;REST API实战演练之客户端使用Rest API-CSDN博客 接下来咱们看看JavaScript怎么使用REST API。 一、新建一个…

swiftui macOS实现加载本地html文件

import SwiftUI import WebKitstruct ContentView: View {var body: some View {VStack {Text("测试")HTMLView(htmlFileName: "localfile") // 假设你的本地 HTML 文件名为 index.html.frame(minWidth: 100, minHeight: 100) // 设置 HTMLView 的最小尺寸…