SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

多变量时间序列预测是一项重要的任务,它涉及对具有多个变量的时间序列数据进行预测。为了改进这一任务的预测性能,研究者们提出了许多不同的模型和算法。其中一种结合了时间卷积网络(Temporal Convolutional Network,TCN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和注意力机制(Attention)的模型。

该算法的核心思想是利用时间卷积网络来捕捉时间序列数据中的长期依赖关系,通过双向门控循环单元来建模序列数据的上下文信息,并通过注意力机制来自适应地加权不同变量的重要性。

步骤如下:

时间卷积网络(TCN):使用一维卷积层来提取时间序列数据中的局部和全局特征。时间卷积能够通过不同大小的卷积核捕捉不同长度的时间依赖关系,从而更好地建模序列中的长期依赖。

双向门控循环单元(BiGRU):将TCN的输出作为输入,使用双向门控循环单元来编码序列数据的上下文信息。双向GRU能够同时考虑序列数据的过去和未来信息,提高了对序列中重要特征的捕捉能力。

注意力机制(Attention):通过引入注意力机制,模型可以自适应地关注输入序列中不同变量的重要性。注意力机制可以根据序列数据的不同特征,动态地调整它们在预测任务中的权重,从而提高模型的表达能力和预测准确性。

输出层:最后,根据模型的具体任务需求,可以使用不同的输出层结构,如全连接层来进行最终的预测。

通过将时间卷积网络、双向门控循环单元和注意力机制相结合,OOA-TCN-BiGRU-Attention鲸鱼算法能够更好地建模多变量时间序列数据的复杂关系,并提高预测性能。然而,需要注意的是,该算法的具体实现可能会根据具体问题和数据集的特点进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

%% 

%% 算法优化TCN-BiGRU-Attention,实现多变量输入单步预测
clc;
clear 
close all



%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);

outputName = layer.Name;

for i = 1:numBlocks
    dilationFactor = 2^(i-1);
    
    layers = [
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)
        layerNormalizationLayer
        dropoutLayer(dropoutFactor) 
        % spatialDropoutLayer(dropoutFactor)
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")
        layerNormalizationLayer
        reluLayer
        dropoutLayer(dropoutFactor) 
        additionLayer(2,Name="add_"+i)];

    % Add and connect layers.
    lgraph = addLayers(lgraph,layers);
    lgraph = connectLayers(lgraph,outputName,"conv1_"+i);

    % Skip connection.
    if i == 1
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end
    
    % Update layer output name.
    outputName = "add_" + i;
end


function [z] = levy(n,m,beta)

    num = gamma(1+beta)*sin(pi*beta/2); % used for Numerator 
    
    den = gamma((1+beta)/2)*beta*2^((beta-1)/2); % used for Denominator

    sigma_u = (num/den)^(1/beta);% Standard deviation

    u = random('Normal',0,sigma_u,n,m); 
    
    v = random('Normal',0,1,n,m);

    z =u./(abs(v).^(1/beta));

  
  end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/529999.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何将h5网页打包成iOS苹果IPA文件

哈喽,大家好呀,淼淼又来和大家见面啦,最近有很多小伙伴都被难住了,是什么问题给他们都难住了呢,许多小伙伴都说想要把h5网页打包成iOS苹果IPA文件,但是却不知道具体怎么操作,是怎么样的一个流程…

蓝桥杯每日一题(背包dp,线性dp)

//3382 整数拆分 将 1,2,4,8看成一个一个的物品&#xff0c;以完全背包的形式放入。 一维形式&#xff1a;f]0]1; #include<bits/stdc.h> using namespace std; //3382整数拆分 const int N1e610, M5e510; int mod1e9; int f[N],n; int main() {cin>>n;//转化为完…

appium+jenkins实例构建

自动化测试平台 Jenkins简介 是一个开源软件项目&#xff0c;是基于java开发的一种持续集成工具&#xff0c;用于监控持续重复的工作&#xff0c;旨在提供一个开放易用的软件平台&#xff0c;使软件的持续集成变成可能。 前面我们已经开完测试脚本&#xff0c;也使用bat 批处…

从零开始学习:如何使用Selenium和Python进行自动化测试?

安装selenium 打开命令控制符输入&#xff1a;pip install -U selenium 火狐浏览器安装firebug&#xff1a;www.firebug.com&#xff0c;调试所有网站语言&#xff0c;调试功能 Selenium IDE 是嵌入到Firefox 浏览器中的一个插件&#xff0c;实现简单的浏览器操 作的录制与回…

【微服务】------微服务架构技术栈

目前微服务早已火遍大江南北&#xff0c;对于开发来说&#xff0c;我们时刻关注着技术的迭代更新&#xff0c;而项目采用什么技术栈选型落地是开发、产品都需要关注的事情&#xff0c;该篇博客主要分享一些目前普遍公司都在用的技术栈&#xff0c;快来分享一下你当前所在用的技…

PS入门|如何使用“主体”功能进行抠图?

前言 前段时间讲到给各种图标和LOGO抠图的办法&#xff0c;分别使用的是 钢笔工具蒙版 PS入门&#xff5c;规规矩矩的图形怎么抠出来&#xff1f; 魔棒工具蒙版 PS入门&#xff5c;黑白色的图标怎么抠成透明背景 色阶蒙版 PS入门&#xff5c;目标比较复杂&#xff0c;但背景…

数据中台系统架构的探索之路:生产管理企业的数字化转型引擎-亿发

当前制造业面临着诸多问题。 1、系统繁杂&#xff0c;涉及多个子系统和应用&#xff0c;导致信息孤岛和数据孤立现象普遍存在。 2、其次是业务流程冗长&#xff0c;造成生产过程中的信息传递和协同困难&#xff0c;影响效率和质量。 3、数据应用问题也十分突出&#xff0c;包…

android平台下opencv的编译--包含扩展模块

由于项目需要使用安卓平台下opencv的扩展库&#xff0c;对于通用的opencv库&#xff0c; opencv官网提供了android的SDK 但未能提供扩展库&#xff0c;因此需要自己进行源码编译。本文记录android平台下opencv及其扩展库的交叉编译。 前提&#xff1a;主机已安装android-ndk交…

mybatis-plus与mybatis同时使用别名问题

在整合mybatis和mybatis-plus的时候发现一个小坑&#xff0c;单独使用mybatis&#xff0c;配置别名如下&#xff1a; #配置映射文件中指定的实体类的别名 mybatis.type-aliases-packagecom.jk.entity XML映射文件如下&#xff1a; <update id"update" paramete…

vue2 使用vue-org-tree demo

1.安装 npm i vue2-org-tree npm install -D less-loader less安装 less-loader出错解决办法&#xff0c;直接在package.json》devDependencies下面加入less和less-loader版本&#xff0c;然后执行npm i &#xff0c;我用的nodejs版本是 16.18.0&#xff0c;“webpack”: “^4…

Redis的双写一致性问题

双写一致性问题 1.先删除缓存或者先删除数据库都可能出现脏数据。 2.删除两次缓存&#xff0c;可以在一定程度上降低脏数据的出现。 3.延时是因为数据库一般采用主从分离&#xff0c;读写分离。延迟一会是让主节点把数据同步到从节点。 1.读写锁保证数据的强一致性 因为一般放…

java Web在线考试管理系统用eclipse定制开发mysql数据库BS模式java编程jdbc

一、源码特点 JSP 在线考试管理系统是一套完善的web设计系统&#xff0c;对理解JSP java 编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,eclipse开发&#xff0c;数据库为Mysql5.0&#xff0c;使…

DDoS攻击包含哪些层面?如何防护?

DDoS攻击&#xff08;分布式拒绝服务攻击&#xff09;是一种通过向目标服务器发送大量流量或请求&#xff0c;以使其无法正常工作的网络攻击手段。DDoS攻击涉及多个层面&#xff0c;在实施攻击时对网络基础架构、网络协议、应用层等进行攻击。下面将详细介绍DDoS攻击的层面。 1…

CentOS 7 升级 5.4 内核

MatrixOne 推荐部署使用的操作系统为 Debian 11、Ubuntu 20.04、CentOS 9 等 Kernel 内核版本高于 5.0 的操作系统。随着 CentOS 7 的支持周期接近尾声&#xff0c;社区不少小伙伴都在讨论用以替换的 Linux 操作系统&#xff0c;经过问卷调查&#xff0c;我们发现小伙伴们的操作…

eclipse .project

.project <?xml version"1.0" encoding"UTF-8"?> <projectDescription> <name>scrm-web</name> <comment></comment> <projects> </projects> <buildSpec> <buil…

C++数据结构与算法——贪心算法难题

C第二阶段——数据结构和算法&#xff0c;之前学过一点点数据结构&#xff0c;当时是基于Python来学习的&#xff0c;现在基于C查漏补缺&#xff0c;尤其是树的部分。这一部分计划一个月&#xff0c;主要利用代码随想录来学习&#xff0c;刷题使用力扣网站&#xff0c;不定时更…

配置交换机SSH管理和端口安全——实验2:配置交换机端口安全

实验目的 通过本实验可以掌握&#xff1a; 交换机管理地址配置及接口配置。查看交换机的MAC地址表。配置静态端口安全、动态端口安全和粘滞端口安全的方法 实验拓扑 配置交换机端口安全的实验拓扑如图所示。 配置交换机端口安全的实验拓扑 实验步骤 &#xff08;1&#x…

用友NC Cloud importhttpscer接口存在任意文件上传漏洞

声明&#xff1a; 本文仅用于技术交流&#xff0c;请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任。 简介 用友NC Cloud 是基于云计算技术的企业管理软件。它提…

web安全学习笔记(8)

记一下第十二节课的内容。 一、PHP文件包含的四种方式 Include和Include_once 操作系统会读取包含的文件的内容&#xff0c;并将它插入主文件中&#xff0c;include方式的文件包含会在包含失败的情况下输出警告信息&#xff0c;而include_once方式会检查包含的文件是否已经被…

CSS3新增

一些CSS3新增的功能 课程视频链接 目录 CSS3概述私有前缀长度单位remvwvhvmaxvmin 颜色设置方式ragbhslhsla 选择器动态伪类目标伪类语言伪类UI伪类结构伪类否定伪类伪元素 盒子属性box-sizing问题插播 宽度与设置的不同 resizebox-shadowopacity 背景属性background-originb…