视频插针调研

视频插针

  • 1、评估指标
  • 2、准确度
  • 3、实时
  • 4、视频流处理
  • 3、实时
  • RIFE视频插帧测试

1、评估指标

参考:https://blog.csdn.net/weixin_43478836/article/details/104159648
https://blog.csdn.net/weixin_43605641/article/details/118088814

PSNR和SSIM
PSNR数值越大表示失真越小。,因为数值越大代表MSE越小。MSE越小代表两张图片越接近,失真就越小。
SSIM≤1,SSIM 越大,两张图像越相似。

PSNR(峰值信噪比,Peak Signal-to-Noise Ratio),用于衡量两张图像之间差异,例如压缩图像与原始图像,评估压缩图像质量;复原图像与ground truth,评估复原算法性能等。
SSIM(结构相似性,Structural Similarity)基于人眼会提取图像中结构化信息的假设,比传统方式更符合人眼视觉感知。

但是 PSNR 和 SSIM 都只适合画面复杂度低或完全对齐的图像,例如下图是同一地点的不同时期卫星图像及其重叠显示,对人眼来说相似度高,但由于没对齐导致 SSIM 很低。

2、准确度

参考:https://github.com/zdyshine/Video-Frame-Interpolation-Summary/blob/main/2023_before.md
https://zhuanlan.zhihu.com/p/362525023

在这里插入图片描述
在这里插入图片描述

3、实时

RIFE
IFRNet:CVPR 2022|上海交大&腾讯优图提出IFRNet:视频插帧新范式&新SOTA

CAIN ncnn Vulkan - 只能用于 0.5 时刻点(两帧插一帧)的 AI 视频补帧算法
rife-ncnn-vulkan - 只能用于 0.5 时刻点(两帧插一帧)的 AI 视频补帧算法(速度较快,效果非常好)
DAIN ncnn Vulkan - 支持任意时刻点插帧的 AI 视频补帧算法(速度最慢,占用最高,效果非常好)

谷歌的FILM: Frame Interpolation for Large Motion
https://github.com/google-research/frame-interpolation?tab=readme-ov-file

4、视频流处理

OpenCV、Kafka 和 Spark 技术
所谓视频流,就是一种视频数据信息的传输方式,使用这种方式,用户可以在没有接到完整的数据信息前就能处理那些已接收的信息。这种一边接收,一边处理的方式,很好地解决了视频数据信息在网络上的传输问题。使用者可以不必等待太长的时间,就能收看到视频数据信息。并且在此之后一边播放,一边接收,根本不会感觉到文件没有传完。
视频流是指将视频内容以连续的流式方式传输或播放,而不需要等待整个视频文件下载完毕。视频流使用户能够实时观看视频,而无需等待全部内容下载到本地设备。这种流式传输方式适用于各种视频应用,包括在线视频播放、视频会议、实时转播和直播流等。
视频流:
实时观看:视频流允许用户实时观看视频内容,而不需要等待整个视频文件下载完毕。视频数据以连续的流式方式传输到观众设备,观众可以在数据传输的同时观看内容。
连续性:视频流是连续的数据流,它们通常分为小段,每个段都可以独立下载和播放。观众可以随时开始观看视频,并且可以在观看过程中继续下载后续段。
动态自适应:视频流通常支持动态自适应,可以根据观众的网络带宽和设备性能实时调整视频质量和码率,以提供更好的观看体验。

opencv-python视频流基本操作【视频流是由一帧一帧的图像构成的,我们对视频流的处理,本质上就是对图像的处理,因此这里我们只说明从相机中读取视频,从 …

5、预测视频的动态部分,生成i帧
视频预测是一项复杂的时间序列预测任务。

3、实时

RIFE
IFRNet:CVPR 2022|上海交大&腾讯优图提出IFRNet:视频插帧新范式&新SOTA
IFRNet
CAIN ncnn Vulkan - 只能用于 0.5 时刻点(两帧插一帧)的 AI 视频补帧算法
rife-ncnn-vulkan - 只能用于 0.5 时刻点(两帧插一帧)的 AI 视频补帧算法(速度较快,效果非常好)
DAIN ncnn Vulkan - 支持任意时刻点插帧的 AI 视频补帧算法(速度最慢,占用最高,效果非常好)

谷歌的FILM: Frame Interpolation for Large Motion (只有图片demo)效果可以
https://github.com/google-research/frame-interpolation?tab=readme-ov-file

EMA-VFI (只有图片demo)效果可以

VFIformer (要训练,只有图片)

集成工具
AaronFeng753/Waifu2x-Extension-GUI: Video, Image and GIF upscale/enlarge(Super-Resolution) and Video frame interpolation. Achieved with Waifu2x, Real-ESRGAN, Real-CUGAN, RTX Video Super Resolution VSR, SRMD, RealSR, Anime4K, RIFE, IFRNet, CAIN, DAIN, and ACNet. (github.com)

1、 实时插帧算法对比
实时插针算法主要有:RIFE、IFRNet、DAIN、CAIN,他们的性能对比如下:
在这里插入图片描述

评估指标:PSNR、SSIM和FPS
PSNR(峰值信噪比,Peak Signal-to-Noise Ratio),用于衡量两张图像之间差异,例如压缩图像与原始图像,评估压缩图像质量;复原图像与ground truth,评估复原算法性能等。PSNR数值越大表示失真越小。,因为数值越大代表MSE越小。MSE越小代表两张图片越接近,失真就越小。
SSIM(结构相似性,Structural Similarity)基于人眼会提取图像中结构化信息的假设,比传统方式更符合人眼视觉感知。SSIM≤1,SSIM 越大,两张图像越相似。
FPS是图像领域中的定义,是指画面每秒传输帧数,通俗来讲就是指动画或视频的画面数

2、 设备要求
2GB 以上显存, 4GB 左右的空余运行内存以及4GB+的磁盘剩余空间

3、 测试结果
RIFE
视频分辨率1280x720
1.没量化
在这里插入图片描述
2.开启fp16量化
在这里插入图片描述

3.开启scale=0.5
在这里插入图片描述

显卡v100占用
在这里插入图片描述
参考:
https://zhuanlan.zhihu.com/p/362525023
https://github.com/zdyshine/Video-Frame-Interpolation-Summary/blob/main/2023_before.md

RIFE视频插帧测试

1、环境部署
#拉取镜像
docker pull nvcr.io/nvidia/pytorch:23.12-py3
#创建docker
docker run --gpus all --cpus 48 --shm-size 16G --memory 500gb --privileged=true -itd --name rife_test
#git拉取源码
git clone https://github.com/megvii-research/ECCV2022-RIFE.git
#安装运行相关包
cd ECCV2022-RIFE
pip3 install -r requirements.txt

2、运行推理
插帧命令
插一帧:python3 inference_video.py --exp=1 --video=video.mp4
插两帧:python3 inference_video.py --exp=2 --video=video.mp4
参数说明:
python3 inference_video.py --exp=2 --video=video.mp4 --fps=60 --scale=0.5
exp:插多少帧
video:输入视频路径
fp16:是否使用半精度
scale:压缩视频质量(如果您的视频具有非常高的分辨率,例如 4K,我们建议设置 --scale=0.5(默认为 1.0)。如果您在视频上生成无序模式,请尝试设置 --scale=2.0。此参数控制光流模型的过程分辨率)

3、对比展示
对比方法:
对比方法:对比视频的流畅度,用ffmpeg将多个视频拼接在一起对比(会有压缩),高帧率的硬件不支持(测试设备最高支持60Hz)
横向2个视频排列命令:ffmpeg -i 0.mp4 -i 1.mp4 -filter_complex “[0:v]pad=iw2:ih1[a];[a][1:v]overlay=w” out.mp4
4个视频排列命令:ffmpeg -i 0.mp4 -i 1.mp4 -i 2.mp4 -i 3.mp4 -filter_complex “[0:v]pad=iw2:ih2[a];[a][1:v]overlay=w[b];[b][2:v]overlay=0:h[c];[c][3:v]overlay=w:h” out.mp4

展示效果如下:

4、速度对比
对比方法:
1、同一显卡不同参数推理速度对比
2、不同显卡推理速度对比
V100显卡不同参数测试如下图:
1.没量化,推理速度20fps左右
2.开启fp16量化,推理速度25fps左右
3.开启scale=0.5,推理速度28fps左右

4.显卡占用,1G显存左右
2080TiV100显卡不同参数测试如下图:
1.没量化,推理速度17fps左右

2.fp16量化,推理速度22fps左右

3.scale=0.5量化,推理速度31fps左右
测试结论:V100和2080ti显卡的算力差不多,推理需要显存1G左右,在没有量化 的情况下推理速度最高20fps左右,量化情况下推理速度最高30fps。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/529963.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣121. 买卖股票的最佳时机

Problem: 121. 买卖股票的最佳时机 文章目录 题目描述思路复杂度Code 题目描述 思路 1.定义一个int数组max大小同prices;定义int变量curMax初始化为0; 2.从后往前遍历数组,若当前元素prices[i] > curMax时,则使将其赋值给curMa…

聊一聊一些关于npm、pnpm、yarn的事

前言 整理了最近的闲聊,话题是前端各个包管理器,如果分享的不对或者有异议的地方,麻烦请及时告诉我~ 耐心看完,也许你会有所收获~ 概述 本文阅读时间:10-15分钟左右; 难度:初级&#xff0c…

django celery 异步任务 异步存储

环境:win11、python 3.9.2、django 4.2.11、celery 4.4.7、MySQL 8.1、redis 3.0 背景:基于django框架的大量任务实现,并且需要保存数据库 时间:20240409 说明:异步爬取小说,并将其保存到数据库 1、创建…

MAC(M1芯片)编译Java项目慢且发热严重问题解决方案

目录 一、背景二、排查三、解决四、效果以及结果展示五、总结 一、背景 使用idea编译项目等操作,经常性发热严重,并且时间慢。直到昨天编译一个项目用时30分钟,电脑温度很高,并且有烧灼的味道,于是有了此篇文章。 二、…

【网站项目】新冠疫苗预约小程序

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

AI实时换天解决方案:重塑汽车与旅行拍摄新视界

在汽车拍摄与旅行摄影领域,天空作为画面中的重要元素,往往决定着整体视觉效果的成败。美摄科技作为业界领先的AI视觉技术提供商,近日推出了全新的AI实时换天解决方案,为用户带来了前所未有的创意空间与效率提升。 传统的换天技术…

libVLC 提取视频帧使用QGraphicsView渲染

在前面章节中,我们讲解了如何使用QWidget渲染每一帧视频数据,这种方法对 CPU 负荷较高。 libVLC 提取视频帧使用QWidget渲染-CSDN博客 后面又讲解了使用OpenGL渲染每一帧视频数据,使用 OpenGL去绘制,利用 GPU 减轻 CPU 计算负荷…

骑砍2霸主MOD开发(2)-基础开发环境搭建

一.骑砍2霸主程序架构 二.骑砍2霸主C#接口层代码查看 1.C#反编译工具dnspy下载: 2.骑砍2霸主游戏引擎接口查看: 例如IMBAgent interface接口: #调用TaleWorlds.Native.dll中的函数 [EngineMethod("get_movement_flags", false)] uint GetMovementFlags(UIntPtr agen…

【面试精讲】MyBatis设计模式及源码分析,MyBatis设计模式实现原理

【面试精讲】MyBatis设计模式及源码分析,MyBatis设计模式实现原理 目录 本文导读 一、MyBatis中运用的设计模式详解 1. 工厂模式(Factory Pattern) 2. 单例模式(Singleton Pattern) 3. 建造者模式(Bu…

Java常见算法_常见的查找算法和排序算法——简介及代码演示

在本文中我将介绍Java中的常见算法,查找算法包括基本查找、二分查找、插值查找和分块查找。排序算法包括冒泡排序、选择排序、插入排序和快速排序 查找算法: 1.基本查找: 代码: public class BasicSearchDemo {public static …

电商技术揭秘十五:数据挖掘与用户行为分析

相关系列文章 电商技术揭秘一:电商架构设计与核心技术 电商技术揭秘二:电商平台推荐系统的实现与优化 电商技术揭秘三:电商平台的支付与结算系统 电商技术揭秘四:电商平台的物流管理系统 电商技术揭秘五:电商平台…

Harmony鸿蒙南向驱动开发-ADC

ADC(Analog to Digital Converter),即模拟-数字转换器,可将模拟信号转换成对应的数字信号,便于存储与计算等操作。除电源线和地线之外,ADC只需要1根线与被测量的设备进行连接,其物理连线如图1所…

《前端面试题》- JS基础 - call()、apply()、bind() 的区别

call 、bind 、 apply 这三个函数的功能都是改变this的指向问题,但是也存在一定的区别。 call 的参数是直接放进去的,第二第三第 n 个参数全都用逗号分隔,apply 的所有参数都必须放在一个数组里面传进去bind 除了返回是函数以外,它 的参数和…

Idea中 maven 下载jar出现证书问题

目录 1: 具体错误: 2: 忽略证书代码: 3: 关闭所有idea, 清除缓存, 在下面添加如上忽略证书代码 4:执行 maven clean 然后刷刷新依赖 完成,撒花!&#x…

DRF的认证、权限、限流、序列化、反序列化

DRF的认证、权限、限流、序列化、反序列化 一、认证 1、直接用,用户授权 实现方法 编写 ->认证组件 应用组件 编写 ->认证组件 from rest_framework.authentication import BaseAuthentication from rest_framework.exceptions import AuthenticationF…

基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1遗传算法与模拟退火算法简介 4.2 GSAHO算法应用于JSSP 5.完整程序 1.程序功能描述 车间作业调度问题(Job Shop Scheduling Problem, JSSP)是一种典型的生产调度问…

数据仓库的概念和作用?如何搭建数据仓库?

随着企业规模的扩大和数据量的爆炸性增长,有效管理和分析海量数据成为企业数字化转型的关键。而在互联网的普及过程中,信息技术已深入渗透各行业,逐渐融入企业的日常运营。然而,企业在信息化建设中面临了一系列困境和挑战&#xf…

登录压力测试

目录 一、准备测试数据 1.1数据库存储过程添加数据 1.2导出为csv作为测试数据(账号、密码) 二、使用fiddler抓包查看接口 2.1.抓到相关接口信息 2.2添加线程组和http请求 2.3将前面接口需要的参数去json格式化 ​2.4填写相关信息 ​ 2.5添加http…

gpt科普1 GPT与搜索引擎的对比

GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的自然语言处理模型。它通过大规模的无监督学习来预训练模型,在完成这个阶段后,可以用于各种NLP任务,如文本生成、机器翻译、文本分类等。 以下是关…

【网络安全】WebPack源码(前端源码)泄露 + jsmap文件还原

前言 webpack是一个JavaScript应用程序的静态资源打包器。它构建一个依赖关系图,其中包含应用程序需要的每个模块,然后将所有这些模块打包成一个或多个bundle。大部分Vue等项目应用会使用webpack进行打包,使用webpack打包应用程序会在网站js…