Redis(主从复制、哨兵模式、集群)概述及部署

文章目录

  • 一、Redis模式
  • 二、Redis 持久化
    • 1.Redis 提供两种方式进行持久化:
    • 2.RDB 持久化
      • 2.1 触发条件
      • 2.2 执行流程
      • 2.3 启动时加载
    • 3.AOF持久化
      • 3.1 执行流程
        • 3.1.1 命令追加(append)
        • 3.1.2 文件写入(write)和文件同步(sync)
        • 3.1.3 文件重写(rewrite)
      • 3.2 文件重写的触发,分为手动触发和自动触发:
      • 3.3 文件重写的流程如下:
      • 3.4 启动时加载
    • 4.RDB和AOF的优缺点
      • 4.1 RDB持久化
      • 4.2 AOF持久化
    • 5.Redis 性能管理
      • 5.1 查看Redis内存使用
      • 5.2内存碎片率
      • 5.3 内存使用率
      • 5.4 内回收key
  • 三、redis主从复制
    • 1.Redis主从复制的概念
    • 2.Redis主从复制的作用
      • 2.1 Redis主从复制的流程
  • 四、redis哨兵模式
    • 4.1 哨兵 模式原理:
    • 4.2 哨兵模式的作用
    • 4.3 故障转移机制
  • 五、Redis 群集模式
    • 5.1 集群的作用
    • 5.2 Redis集群的数据分片
  • 总结


一、Redis模式

Redis有三种模式:分别是主从同步/复制、哨兵模式、Cluster

主从复制:主从复制是高可用Redis的基础,哨兵和群集都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单故障恢复。

缺陷:故障恢复无法自动化,写操作无法负载均衡,存储能力受到单机的限制。

哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。

缺陷:写操作无法负载均衡,存储能力受到单机的限制,哨兵无法对从节点进行自动故障转移;在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。

集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

二、Redis 持久化

持久化的功能

redis是内存数据库,数据都是存储在内存中,为了避免服务器服务器断电等导致redis进程异常退出后数据的永久丢失,需要定期将redis中的数据以某种形式(数据或命令)从内存保存到硬盘;

当下次redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

1.Redis 提供两种方式进行持久化:

●RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上。 ●AOF 持久化(append only file):原理是将Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地

2.RDB 持久化

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

2.1 触发条件

RDB持久化的触发分为手动触发和自动触发两种。

(1)手动触发
save命令和bgsave命令都可以生成RDB文件。
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。

bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。

(2)自动触发
在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。

save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。

vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes

##其他自动触发机制##
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。

2.2 执行流程

(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑: 两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息

在这里插入图片描述

2.3 启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时, 才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。

Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

3.AOF持久化

RDB持久化 是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录;
当Redis重启时 再次执行AOF文件中的命令来恢复数据。

1. 开启AOF
Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes


/etc/init.d/redis_6379 restart

3.1 执行流程

AOF的执行流程包括:

●命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
●文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
●文件重写(rewrite):定期重写AOF文件,达到压缩的目的。

3.1.1 命令追加(append)

Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。

命令追加的格式是: Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

3.1.2 文件写入(write)和文件同步(sync)

Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:

为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

AOF缓存区的同步文件策略存在三种同步方式,它们分别是:

vim /etc/redis/6379.conf
–729–
● appendfsync always[一直触发]: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。

● appendfsync no【不触发】: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。

● appendfsync everysec【每秒触发】: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

3.1.3 文件重写(rewrite)

随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,

AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

关于文件重写需要注意的另一点是: 对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

文件重写之所以能够压缩AOF文件,原因在于:

●过期的数据不再写入文件
●无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、
有些数据被删除了(set myset v1, del myset)等。
●多条命令可以合并为一个:如sadd myset v1, sadd myset v2, 
sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

3.2 文件重写的触发,分为手动触发和自动触发:

手动触发: 直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
自动触发: 通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

vim /etc/redis/6379.conf
--729--
●auto-aof-rewrite-percentage 100	:当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
●auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF	

3.3 文件重写的流程如下:

在这里插入图片描述

(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,
如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”
信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,
并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。
由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,
防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,
Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,
具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,
这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。

缩减版AOF文件重写流程:

1、Redis父进程先会判断是否有其他子进程在运行,如果是bdrewriteaof的会直接返回,如果是bgsave的会等它执行完成后在执行;
2、如果没有其他子进程,父进程会fork子进程,fork过程中父进程阻塞,子进程创建好后,会信息通知;父进程继续响应其他命令。
3.1、Redis会将写入命令存在缓存区里,根据fsync策略同步到硬盘里,fork后的数据也会写入到aof文件中;
3.2、父进程完成后的命令同时记录到aof_buf和aof_rewarite_buf当中;
4、子进程根据重写规则生成新的AOF文件;
5.1、子进程完成新AOF文件的生成后,向父进程发送信号,父进程更新统计信息;
5.2、fork后的数据会写入到新的AOF文件中;
5.3、新的AOF文件会替换旧的AOF文件;完成AOF重写;

3.4 启动时加载

当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。

4.RDB和AOF的优缺点

4.1 RDB持久化

优点: RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。
当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

缺点: RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。
此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。

对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,
另一方面,子进程向硬盘写数据也会带来IO压力。

4.2 AOF持久化

与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。

AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。

相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。

5.Redis 性能管理

5.1 查看Redis内存使用

192.168.9.236:7001> info memory

5.2内存碎片率

操作系统分配的内存值 used_memory_rss 除以 Redis 使用的内存总量值 used_memory 计算得出。 内存值used_memory_rss 表示该进程所占物理内存的大小,即为操作系统分配给 Redis 实例的内存大小。

除了用户定义的数据和内部开销以外,used_memory_rss 指标还包含了内存碎片的开销,内存碎片 是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)。

举例来说: Redis 需要分配连续内存块来存储 1G 的数据集。如果物理内存上没有超过 1G 的连续内存块, 那操作系统就不得不使用多个不连续的小内存块来分配并存储这 1G 数据,该操作就会导致内存碎片的产生

跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:

●内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
●内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。
需要在redis-cli工具上输入shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,
再重启服务器。
●内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。
需要增加可用物理内存或减少 Redis 内存占用。

5.3 内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

避免内存交换发生的方法:

●针对缓存数据大小选择安装 Redis 实例
●尽可能的使用Hash数据结构存储
●设置key的过期时间

5.4 内回收key

内存清理策略,保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:
vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction
●volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,
针对设置了TTL的key)
●volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
●volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
●allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
●allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
●noenviction:禁止淘汰数据(不删除直到写满时报错)

三、redis主从复制

1.Redis主从复制的概念

**主从复制,是指:**将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

2.Redis主从复制的作用

数据冗余: 主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

故障恢复: 当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

负载均衡: 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

高可用基石: 除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

2.1 Redis主从复制的流程

1、若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。

2、无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。

3、后台进程完成缓存操作之后,Maste机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。

4、Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

在这里插入图片描述
主从复制、SYNC同步:

1、Redis从服务器向主服务器发送sync同步数据请求;
2、主redis会fork一个子进程,然后产生RDB文件(完全备份)的过程;
2.1客户端在持续写入redis;
3、RDB文件持久化完成后,主redis会持续将RDB文件和缓存起来的命令推送给从服务器;
4、复制、推送完之后,主redis会持续同步操作命令,利用AOF持久化(增量备份)功能;
5、在下一台从Redis接入主从复制的集群之前,会持续利用AOF的方式同步数据给从redis。

四、redis哨兵模式

主从切换技术的方法是: 当服务器宕机后,需要手动一台从机换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务器不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能: 在主从复制的基础上,哨兵引入了主节点的自动故障转移

4.1 哨兵 模式原理:

哨兵(sentinel): 是一个分布式系统,用于 对主从结构中的每台服务器进行监控,当出现 故障时,通过投票机制选择新的master并将所有slave连接到新的master。所以整个运行哨兵的集群的数量不得少于三个节点。【哨兵必须是奇数】

4.2 哨兵模式的作用

监控: 哨兵会不断地检测主节点和从节点是否运行正常。

自动故障转移: 当主节点不能正常工作时,哨兵会开始自动故障转移操作,她会将失效主节点的其中一个从节点升级为新的主节点,并让其他从节点改为新的主节点。

通知(提醒): 哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成: 哨兵节点和数据节点

哨兵节点:哨兵系统由一个或者多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
数据节点:主节点和从节点都是数据节点。

4.3 故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障,每个哨兵节点每隔1秒会向主节点、从节点以及它哨兵节点发送一次ping命令做一次心跳检测。

如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。

当超过一半哨兵节点认为该主节点主观下线了,这样就是客观下线了。

2.当主节点出现故障时, 此时哨兵节点会通过raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知,所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障时,被哨兵主观线下后,不会再有后续的客观下线和故障转移操作。

主节点的选举:

1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

五、Redis 群集模式

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

5.1 集群的作用

(1)数据分区: 数据分区(或称数据分片)是集群最核心的功能。

集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用: 集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

5.2 Redis集群的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383) 集群的每个节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含05460号哈希槽
节点B包含546110922号哈希槽
节点C包含1092316383号哈希槽

#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用


总结

redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster群集

主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。

哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。

集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/52953.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

并发编程——线程池

1.概述 如果并发的线程过多,而且执行的时间都非常短,如果这样,每次都要创建线程就会大大降低效率,我们可以通过线程池来解决,JDK5增加了内置线程池ThreadPollExecutor。 2.线程池的优点 1.重复利用,降低…

复现YOLOv5改进最新MPDIoU:有效和准确的边界盒回归的损失,打败G/E/CIoU,效果明显!!!

MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression 论文简介MPDIoU核心设计思路论文方法实验部分加入YOLOv5代码论文地址:https://arxiv.org/pdf/2307.07662.pdf 论文简介 边界盒回归(Bounding box regression, BBR)广泛应用于目标检测和实例分割,是目标…

软件测试员,面试常见的18个问题(记得收藏!)

软件测试面试18个常见问题汇总 Q1:项目中相关需求问题,测试可以直接和客户沟通吗? A1:可以,最初与客户沟通需求时,测试人员直接参与,所以我们可以直接和客户方的代表开会进行沟通。 A2&#xff…

HTTP——二、简单的HTTP协议

本章将针对 HTTP 协议结构进行讲解,主要使用HTTP/1.1版本。学完这章,想必大家就能理解 HTTP 协议的基础了。 HTTP 一、HTTP协议用于客户端和服务器之间的通信二、通过请求和响应的交换达成通信三、HTTP是不保存状态的协议四、请求URI定位资源五、告知服…

【云原生】一文学会Docker存储所有特性

目录 1.Volumes 1.Volumes使用场景 2.持久将资源存放 3. 只读挂载 2.Bind mount Bind mounts使用场景 3.tmpfs mounts使用场景 4.Bind mounts和Volumes行为上的差异 5.docker file将存储内置到镜像中 6.volumes管理 1.查看存储卷 2.删除存储卷 3.查看存储卷的详细信息…

“程序员求职攻略:IT技术岗面试的必备技巧“

文章目录 每日一句正能量前言分享面试IT公司的小技巧IT技术面试有哪些常见的问题?分享总结遇到过的面试题后记 每日一句正能量 人活一世,不在乎朋友多少,不问财富几车,关键看在你最困难的时候,是否有一个伸出援手的人&…

按键消抖(有/无状态机)

一,理论概念 按键抖动 按键抖动:按键抖动通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而在闭…

哥大Salesforce重磅发布!最丰富的统一对话数据集,几乎支持所有对话任务

夕小瑶科技说 原创 作者 | 小戏、Python 尽管以 ChatGPT 为代表的对话式人工智能概念炒的火热,但是事实上作为当下智能发动机的大模型,其真正的动力源泉——数据集——仍然面临诸多困难。 所谓 Garbage In, Garbage Out,这条数据科学的朴素…

Linux复习——基础知识

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​ 1. 有关早期linux系统中 sysvin的init的7个级别描述正确的是( )[选择1项] A. init 1 关机状态 B. init 2 字符界面多用户模式 …

要单片机和RTOS有必要学习嵌入式linux吗?

学习嵌入式 Linux 是否有必要,取决于你的项目需求和职业发展目标。以下是一些考虑因素: 项目需求:如果你的项目需要处理复杂的网络、文件系统、多任务管理等功能,嵌入式 Linux 可能是更适合的选择。Linux 提供了丰富的开源软件包和…

排序算法汇总

每日一句:你的日积月累终会成为别人的望尘莫及 目录 常数时间的操作 选择排列 冒泡排列 【异或运算】 面试题: 1)在一个整形数组中,已知只有一种数出现了奇数次,其他的所有数都出现了偶数次,怎么找到…

为何押注AI大模型的微软云,业绩增速反而不如谷歌云?

科技云报道原创。 上周微软、谷歌、Meta等国外科技公司相继发布最新财报。作为与人工智能、云计算和数字广告等领域相关的巨头,它们的一举一动都将对市场产生影响,同时也吸引着众多从业者的关注。 在国外三大云巨头中,谷歌云的市场份额长期…

渗透测试:Linux提权精讲(二)之sudo方法第二期

目录 写在开头 sudo expect sudo fail2ban sudo find sudo flock sudo ftp sudo gcc sudo gdb sudo git sudo gzip/gunzip sudo iftop sudo hping3 sudo java 总结与思考 写在开头 本文在上一篇博客的基础上继续讲解渗透测试的sudo提权方法。相关内容的介绍与背…

docker 部署 mysql8.0 无法访问

文章目录 🗽先来说我的是什么情况🪁问题描述🪁解决方法:✔️1 重启iptables✔️2 重启docker 🪁其他有可能连不上的原因✔️1 客户端不支持caching_sha2_password的加密方式✔️2 my.conf 配置只有本机可以访问 &#…

CTF:信息泄露.(CTFHub靶场环境)

CTF:信息泄露.(CTFHub靶场环境) “ 信息泄露 ” 是指网站无意间向用户泄露敏感信息,泄露了有关于其他用户的数据,例如:另一个用户名的财务信息,敏感的商业 或 商业数据 ,还有一些有…

读取application-dev.properties的中文乱码【bug】

读取application-dev.properties的中文编码【bug】 2023-7-30 22:37:46 版权 禁止其他平台发布时删除以下此话 本文首次发布于CSDN平台 作者是CSDN日星月云 博客主页是https://blog.csdn.net/qq_51625007 禁止其他平台发布时删除以上此话 bug 读取application-dev.propert…

2023年的深度学习入门指南(20) - LLaMA 2模型解析

2023年的深度学习入门指南(20) - LLaMA 2模型解析 上一节我们把LLaMA 2的生成过程以及封装的过程的代码简单介绍了下。还差LLaMA 2的模型部分没有介绍。这一节我们就来介绍下LLaMA 2的模型部分。 这一部分需要一些深度神经网络的基础知识,不懂的话不用着急&#xf…

建木使用进阶-创建密钥管理

阿丹: 第一次我们进入建木,第一件事情就是配置我们相关的密钥。 解读: 在建木中我们可以进行创建密钥来对我们服务器等密码进行方便的管理。 注意: 登录的时候账号为:admin 密码为:123456 这是初始…

Windows环境下git客户端中的git-bash和MinGW64

我们在 Windows10 操作系统下,安装了 git 客户端之后,可以通过 git-bash.exe 打开一个 shell: 执行一些 linux 系统里的命令: 注意到上图紫色的 MINGW64. Mingw-w64 是原始 mingw.org 项目的改进版,旨在支持 Window…

【playbook】Ansible的脚本----playbook剧本

Ansible的脚本----playbook剧本 1.playbook剧本组成2.playbook剧本实战演练2.1 实战演练一:给被管理主机安装Apache服务2.2 实战演练二:使用sudo命令将远程主机的普通用户提权为root用户2.3 实战演练三:when条件判断指定的IP地址2.4 实战演练…