谱重排方法能够得到非常高的时频分辨率,但是同样也存在一个问题,不能重构原始信号,2011 年 Daubechies 提出了一种基于相位的高分辨率时频分析方法—同步压缩小波变换,该方法也是一种谱重排的方法,能使非平稳非线性信号在时频域高度聚焦,与传统谱重排不同的是,同步压缩小波变换能够重构原始信号。
谱重排是在谱图等二次型时频分布的基础上重新排列时间-频率坐标系,它对时频谱上的点沿时间和频率两个方向都做了移动,而同步压缩变换是在短时傅里叶变换和小波变换等线性时频分布基础上进行的,只对频率进行重排,没有考虑时间,如下图所示。
蓝色箭头为谱重排(RM)的能量重排方式,红色箭头为同步压缩变换的能量重排方式。所以谱重排不能重构信号,而同步压缩变换可以。
以一个模拟信号为例,分别做 Gabor变换,小波变换,同步压缩Gabor变换和同步压缩小波变换,这个信号在时间 0-0.35s之间频率为10Hz,0.35s-0.65s之间频率为20Hz,0.65s-1s之间频率为 30Hz。Gabor 变换(图a)具有恒定的时频分辨率,因此对于不同的频率成分,其时频展布是相同的,小波变换(图b)在高频端具有高时间分辨率, 但是频率分辨能力较差,通过同步压缩小波变换(图d),发散的能量得到了很好的聚焦,与同步压缩 Gabor 变换得到的结果(图c)相似,都具有非常高的时频分辨率。
同步压缩变换只在频率方向上进行压缩,因此对于平稳的信号可以得到极高的时频分辨率,但是当信号变化比较剧烈时,时频分辨能力会有所下降。对一个频率变化比较剧烈的信号 ( ):
添加图片注释,不超过 140 字(可选)
分别采用不同的时频分析方法得到的时频谱。Gabor 变换(图a)窗函数固定,所以高频端时间分辨率不足,导致同步压缩 Gabor 变换(图c)高频分辨率不如同步压缩小波变换(图d),小波变 换(图b)在低频端时间分辨率较差,同步压缩小波变换也存在这一问题。
工学博士,担任《Mechanical System and Signal Processing》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。