100道面试必会算法-20-全排列
给定一个不含重复数字的数组 nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
示例 1:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1]
输出:[[1]]
解题思路
没写出来,想到的最笨的方法就是for循环遍历所有可能,那必然是不太行,。
此题采用回溯算法的思路,首先尝试在纸上写 3 个数字、4个数字、5 个数字的全排列,相信不难找到这样的方法。以数组 [1, 2, 3]
的全排列为例。
- 先写以 111 开头的全排列,它们是:[1, 2, 3], [1, 3, 2],即 1 + [2, 3] 的全排列(注意:递归结构体现在这里);
- 再写以 222 开头的全排列,它们是:[2, 1, 3], [2, 3, 1],即 2 + [1, 3] 的全排列;
- 最后写以 333 开头的全排列,它们是:[3, 1, 2], [3, 2, 1],即 3 + [1, 2] 的全排列。
- 总结搜索的方法:按顺序枚举每一位可能出现的情况,已经选择的数字在 当前 要选择的数字中不能出现。按照这种策略搜索就能够做到 不重不漏。这样的思路,可以用一个树形结构表示。
看到这里的朋友,建议先尝试自己画出「全排列」问题的树形结构。
说明
每一个结点表示了求解全排列问题的不同的阶段,这些阶段通过变量的「不同的值」
体现,这些变量的不同的值,称之为「状态」
;
- 使用深度优先遍历有「回头」的过程,在「回头」以后, 状态变量需要设置成为和先前一样 ,因此在回到上一层结点的过程中,需要撤销上一次的选择,这个操作称之为「状态重置」;
- 深度优先遍历,借助系统栈空间,保存所需要的状态变量,在编码中只需要注意遍历到相应的结点的时候,状态变量的值是正确的,具体的做法是:往下走一层的时候,path 变量在尾部追加,而往回走的时候,需要撤销上一次的选择,也是在尾部操作,因此 path 变量是一个栈;
- 深度优先遍历通过「回溯」操作,实现了全局使用一份状态变量的效果。
- 使用编程的方法得到全排列,就是在这样的一个树形结构中完成 遍历,从树的根结点到叶子结点形成的路径就是其中一个全排列。
设计状态变量
- 首先这棵树除了根结点和叶子结点以外,每一个结点做的事情其实是一样的,即:在已经选择了一些数的前提下,在剩下的还没有选择的数中,依次选择一个数,这显然是一个 递归 结构;
- 递归的终止条件是: 一个排列中的数字已经选够了 ,因此我们需要一个变量来表示当前程序递归到第几层,我们把这个变量叫做 depth,或者命名为 index ,表示当前要确定的是某个全排列中下标为 index 的那个数是多少;
- 布尔数组 used,初始化的时候都为 false 表示这些数还没有被选择,当我们选定一个数的时候,就将这个数组的相应位置设置为 true ,这样在考虑下一个位置的时候,就能够以 O(1)O(1)O(1) 的时间复杂度判断这个数是否被选择过,这是一种「以空间换时间」的思想。
- 这些变量称为「状态变量」,它们表示了在求解一个问题的时候所处的阶段。需要根据问题的场景设计合适的状态变量。
代码实现
import java.util.ArrayList;
import java.util.List;
public class Solution {
public List<List<Integer>> permute(int[] nums) {
int len = nums.length;
// 使用一个动态数组保存所有可能的全排列
List<List<Integer>> res = new ArrayList<>();
if (len == 0) {
return res;
}
boolean[] used = new boolean[len];
List<Integer> path = new ArrayList<>();
dfs(nums, len, 0, path, used, res);
return res;
}
private void dfs(int[] nums, int len, int depth,
List<Integer> path, boolean[] used,
List<List<Integer>> res) {
if (depth == len) {
res.add(new ArrayList<>(path));
return;
}
// 在非叶子结点处,产生不同的分支,这一操作的语义是:在还未选择的数中依次选择一个元素作为下一个位置的元素,这显然得通过一个循环实现。
for (int i = 0; i < len; i++) {
if (!used[i]) {
path.add(nums[i]);
used[i] = true;
dfs(nums, len, depth + 1, path, used, res);
// 注意:下面这两行代码发生 「回溯」,回溯发生在从 深层结点 回到 浅层结点 的过程,代码在形式上和递归之前是对称的
used[i] = false;
path.remove(path.size() - 1);
}
}
}
public static void main(String[] args) {
int[] nums = {1, 2, 3};
Solution solution = new Solution();
List<List<Integer>> lists = solution.permute(nums);
System.out.println(lists);
}
}
需要注意变量 path 所指向的列表 在深度优先遍历的过程中只有一份 ,深度优先遍历完成以后,回到了根结点,成为空列表。
在 Java 中,参数传递是 值传递,对象类型变量在传参的过程中,复制的是变量的地址。这些地址被添加到 res 变量,但实际上指向的是同一块内存地址,因此在 res.add(path); 这里做一次拷贝即可。
在 Java 中,参数传递是 值传递,对象类型变量在传参的过程中,复制的是变量的地址。这些地址被添加到 res 变量,但实际上指向的是同一块内存地址,因此在 res.add(path); 这里做一次拷贝即可。