为什么 MySQL 采用 B+ 树作为索引?

资料来源 : 小林coding

小林官方网站 : 小林coding (xiaolincoding.com)

「为什么 MySQL 采用 B+ 树作为索引?」这句话,是不是在面试时经常出现。

要解释这个问题,其实不单单要从数据结构的角度出发,还要考虑磁盘 I/O 操作次数,因为 MySQL 的数据是存储在磁盘中的嘛。

这次,就跟大家一层一层的分析这个问题,图中包含大量的动图来帮助大家理解,相信看完你就拿捏这道题目了!

怎样的索引的数据结构是好的?

MySQL 的数据是持久化的,意味着数据(索引+记录)是保存到磁盘上的,因为这样即使设备断电了,数据也不会丢失。

磁盘是一个慢的离谱的存储设备,有多离谱呢?

人家内存的访问速度是纳秒级别的,而磁盘访问的速度是毫秒级别的,也就是说读取同样大小的数据,磁盘中读取的速度比从内存中读取的速度要慢上万倍,甚至几十万倍。

磁盘读写的最小单位是扇区,扇区的大小只有 512B 大小,操作系统一次会读写多个扇区,所以操作系统的最小读写单位是块(Block)。Linux 中的块大小为 4KB,也就是一次磁盘 I/O 操作会直接读写 8 个扇区。

由于数据库的索引是保存到磁盘上的,因此当我们通过索引查找某行数据的时候,就需要先从磁盘读取索引到内存,再通过索引从磁盘中找到某行数据,然后读入到内存,也就是说查询过程中会发生多次磁盘 I/O,而磁盘 I/O 次数越多,所消耗的时间也就越大。

所以,我们希望索引的数据结构能在尽可能少的磁盘的 I/O 操作中完成查询工作,因为磁盘 I/O 操作越少,所消耗的时间也就越小。

另外,MySQL 是支持范围查找的,所以索引的数据结构不仅要能高效地查询某一个记录,而且也要能高效地执行范围查找。

所以,要设计一个适合 MySQL 索引的数据结构,至少满足以下要求:

  • 能在尽可能少的磁盘的 I/O 操作中完成查询工作;
  • 要能高效地查询某一个记录,也要能高效地执行范围查找;

分析完要求后,我们针对每一个数据结构分析一下。

什么是二分查找?

索引数据最好能按顺序排列,这样可以使用「二分查找法」高效定位数据。

假设我们现在用数组来存储索引,比如下面有一个排序的数组,如果要从中找出数字 3,最简单办法就是从头依次遍历查询,这种方法的时间复杂度是 O(n),查询效率并不高。因为该数组是有序的,所以我们可以采用二分查找法,比如下面这张采用二分法的查询过程图:

可以看到,二分查找法每次都把查询的范围减半,这样时间复杂度就降到了 O(logn),但是每次查找都需要不断计算中间位置

什么是二分查找树?

用数组来实现线性排序的数据虽然简单好用,但是插入新元素的时候性能太低。

因为插入一个元素,需要将这个元素之后的所有元素后移一位,如果这个操作发生在磁盘中呢?这必然是灾难性的。因为磁盘的速度比内存慢几十万倍,所以我们不能用一种线性结构将磁盘排序。

其次,有序的数组在使用二分查找的时候,每次查找都要不断计算中间的位置。

那我们能不能设计一个非线形且天然适合二分查找的数据结构呢?

有的,请看下图这个神奇的操作,找到所有二分查找中用到的所有中间节点,把他们用指针连起来,并将最中间的节点作为根节点。

怎么样?是不是变成了二叉树,不过它不是普通的二叉树,它是一个二叉查找树

二叉查找树的特点是一个节点的左子树的所有节点都小于这个节点,右子树的所有节点都大于这个节点,这样我们在查询数据时,不需要计算中间节点的位置了,只需将查找的数据与节点的数据进行比较。

假设,我们查找索引值为 key 的节点:

  1. 如果 key 大于根节点,则在右子树中进行查找;
  2. 如果 key 小于根节点,则在左子树中进行查找;
  3. 如果 key 等于根节点,也就是找到了这个节点,返回根节点即可。

二叉查找树解决了插入新节点的问题,因为二叉查找树是一个跳跃结构,不必连续排列。这样在插入的时候,新节点可以放在任何位置,不会像线性结构那样插入一个元素,所有元素都需要向后排列。

二叉查找树解决了连续结构插入新元素开销很大的问题,同时又保持着天然的二分结构。

那是不是二叉查找树就可以作为索引的数据结构了呢?

不行不行,二叉查找树存在一个极端情况,会导致它变成一个瘸子!

当每次插入的元素都是二叉查找树中最大的元素,二叉查找树就会退化成了一条链表,查找数据的时间复杂度变成了 O(n)

由于树是存储在磁盘中的,访问每个节点,都对应一次磁盘 I/O 操作(假设一个节点的大小「小于」操作系统的最小读写单位块的大小),也就是说树的高度就等于每次查询数据时磁盘 IO 操作的次数,所以树的高度越高,就会影响查询性能。

二叉查找树由于存在退化成链表的可能性,会使得查询操作的时间复杂度从 O(logn) 升为 O(n)。

而且会随着插入的元素越多,树的高度也变高,意味着需要磁盘 IO 操作的次数就越多,这样导致查询性能严重下降,再加上不能范围查询,所以不适合作为数据库的索引结构。

什么是自平衡二叉树?

为了解决二叉查找树会在极端情况下退化成链表的问题,后面就有人提出平衡二叉查找树(AVL 树)

主要是在二叉查找树的基础上增加了一些条件约束:每个节点的左子树和右子树的高度差不能超过 1。也就是说节点的左子树和右子树仍然为平衡二叉树,这样查询操作的时间复杂度就会一直维持在 O(logn) 。

除了平衡二叉查找树,还有很多自平衡的二叉树,比如红黑树,它也是通过一些约束条件来达到自平衡,不过红黑树的约束条件比较复杂,不是本篇的重点重点,大家可以看《数据结构》相关的书籍来了解红黑树的约束条件。

不管平衡二叉查找树还是红黑树,都会随着插入的元素增多,而导致树的高度变高,这就意味着磁盘 I/O 操作次数多,会影响整体数据查询的效率

比如,下面这个平衡二叉查找树的高度为 5,那么在访问最底部的节点时,就需要磁盘 5 次 I/O 操作。

根本原因是因为它们都是二叉树,也就是每个节点只能保存 2 个子节点 ,如果我们把二叉树改成 M 叉树(M>2)呢?

比如,当 M=3 时,在同样的节点个数情况下,三叉树比二叉树的树高要矮。

因此,当树的节点越多的时候,并且树的分叉数 M 越大的时候,M 叉树的高度会远小于二叉树的高度

什么是 B 树

自平衡二叉树虽然能保持查询操作的时间复杂度在O(logn),但是因为它本质上是一个二叉树,每个节点只能有 2 个子节点,那么当节点个数越多的时候,树的高度也会相应变高,这样就会增加磁盘的 I/O 次数,从而影响数据查询的效率。

为了解决降低树的高度的问题,后面就出来了 B 树,它不再限制一个节点就只能有 2 个子节点,而是允许 M 个子节点 (M>2),从而降低树的高度。

B 树的每一个节点最多可以包括 M 个子节点,M 称为 B 树的阶,所以 B 树就是一个多叉树。

假设 M = 3,那么就是一棵 3 阶的 B 树,特点就是每个节点最多有 2 个(M-1个)数据和最多有 3 个(M个)子节点,超过这些要求的话,就会分裂节点

假设我们在一棵 3 阶的 B 树中要查找的索引值是 9 的记录那么步骤可以分为以下几步:

  1. 与根节点的索引(4,8)进行比较,9 大于 8,那么往右边的子节点走;
  2. 然后该子节点的索引为(10,12),因为 9 小于 10,所以会往该节点的左边子节点走;
  3. 走到索引为9的节点,然后我们找到了索引值 9 的节点。

可以看到,一棵 3 阶的 B 树在查询叶子节点中的数据时,由于树的高度是 3 ,所以在查询过程中会发生 3 次磁盘 I/O 操作。

而如果同样的节点数量在平衡二叉树的场景下,树的高度就会很高,意味着磁盘 I/O 操作会更多。所以,B 树在数据查询中比平衡二叉树效率要高。

但是 B 树的每个节点都包含数据(索引+记录),而用户的记录数据的大小很有可能远远超过了索引数据,这就需要花费更多的磁盘 I/O 操作次数来读到「有用的索引数据」。

而且,在我们查询位于底层的某个节点(比如 A 记录)过程中,「非 A 记录节点」里的记录数据会从磁盘加载到内存,但是这些记录数据是没用的,我们只是想读取这些节点的索引数据来做比较查询,而「非 A 记录节点」里的记录数据对我们是没用的,这样不仅增多磁盘 I/O 操作次数,也占用内存资源。

另外,如果使用 B 树来做范围查询的话,需要使用中序遍历,这会涉及多个节点的磁盘 I/O 问题,从而导致整体速度下降。

什么是 B+ 树?

B+ 树就是对 B 树做了一个升级,MySQL 中索引的数据结构就是采用了 B+ 树,B+ 树结构如下图:

B+ 树与 B 树差异的点,主要是以下这几点:

  • 叶子节点(最底部的节点)才会存放实际数据(索引+记录),非叶子节点只会存放索引;
  • 所有索引都会在叶子节点出现,叶子节点之间构成一个有序链表;
  • 非叶子节点的索引也会同时存在在子节点中,并且是在子节点中所有索引的最大(或最小)。
  • 非叶子节点中有多少个子节点,就有多少个索引;

下面通过三个方面,比较下 B+ 和 B 树的性能区别。

1、单点查询

B 树进行单个索引查询时,最快可以在 O(1) 的时间代价内就查到,而从平均时间代价来看,会比 B+ 树稍快一些。

但是 B 树的查询波动会比较大,因为每个节点即存索引又存记录,所以有时候访问到了非叶子节点就可以找到索引,而有时需要访问到叶子节点才能找到索引。

B+ 树的非叶子节点不存放实际的记录数据,仅存放索引,因此数据量相同的情况下,相比存储即存索引又存记录的 B 树,B+树的非叶子节点可以存放更多的索引,因此 B+ 树可以比 B 树更「矮胖」,查询底层节点的磁盘 I/O次数会更少

2、插入和删除效率

B+ 树有大量的冗余节点,这样使得删除一个节点的时候,可以直接从叶子节点中删除,甚至可以不动非叶子节点,这样删除非常快

注意,:B+ 树对于非叶子节点的子节点和索引的个数,定义方式可能会有不同,有的是说非叶子节点的子节点的个数为 M 阶,而索引的个数为 M-1(这个是维基百科里的定义),因此我本文关于 B+ 树的动图都是基于这个。但是我在前面介绍 B+ 树与 B+ 树的差异时,说的是「非叶子节点中有多少个子节点,就有多少个索引」,主要是 MySQL 用到的 B+ 树就是这个特性。

B+ 树在删除根节点的时候,由于存在冗余的节点,所以不会发生复杂的树的变形 , B 树则不同,B 树没有冗余节点,删除节点的时候非常复杂

B+ 树的插入也是一样,有冗余节点,插入可能存在节点的分裂(如果节点饱和),但是最多只涉及树的一条路径。而且 B+ 树会自动平衡,不需要像更多复杂的算法,类似红黑树的旋转操作等。

因此,B+ 树的插入和删除效率更高

3、范围查询

B 树和 B+ 树等值查询原理基本一致,先从根节点查找,然后对比目标数据的范围,最后递归的进入子节点查找。

因为 B+ 树所有叶子节点间还有一个链表进行连接,这种设计对范围查找非常有帮助,比如说我们想知道 12 月 1 日和 12 月 12 日之间的订单,这个时候可以先查找到 12 月 1 日所在的叶子节点,然后利用链表向右遍历,直到找到 12 月12 日的节点,这样就不需要从根节点查询了,进一步节省查询需要的时间。

而 B 树没有将所有叶子节点用链表串联起来的结构,因此只能通过树的遍历来完成范围查询,这会涉及多个节点的磁盘 I/O 操作,范围查询效率不如 B+ 树。

因此,存在大量范围检索的场景,适合使用 B+树,比如数据库。而对于大量的单个索引查询的场景,可以考虑 B 树,比如 nosql 的MongoDB。

MySQL 中的 B+ 树

MySQL 的存储方式根据存储引擎的不同而不同,我们最常用的就是 Innodb 存储引擎,它就是采用了 B+ 树作为了索引的数据结构。

下图就是 Innodb 里的 B+ 树:

但是 Innodb 使用的 B+ 树有一些特别的点,比如:

  • B+ 树的叶子节点之间是用「双向链表」进行连接,这样的好处是既能向右遍历,也能向左遍历。
  • B+ 树点节点内容是数据页,数据页里存放了用户的记录以及各种信息,每个数据页默认大小是 16 KB。

Innodb 根据索引类型不同,分为聚集和二级索引。他们区别在于,聚集索引的叶子节点存放的是实际数据,所有完整的用户记录都存放在聚集索引的叶子节点,而二级索引的叶子节点存放的是主键值,而不是实际数据。

因为表的数据都是存放在聚集索引的叶子节点里,所以 InnoDB 存储引擎一定会为表创建一个聚集索引,且由于数据在物理上只会保存一份,所以聚簇索引只能有一个,而二级索引可以创建多个。

总结

MySQL 是会将数据持久化在硬盘,而存储功能是由 MySQL 存储引擎实现的,所以讨论 MySQL 使用哪种数据结构作为索引,实际上是在讨论存储引使用哪种数据结构作为索引,InnoDB 是 MySQL 默认的存储引擎,它就是采用了 B+ 树作为索引的数据结构。

要设计一个 MySQL 的索引数据结构,不仅仅考虑数据结构增删改的时间复杂度,更重要的是要考虑磁盘 I/0 的操作次数。因为索引和记录都是存放在硬盘,硬盘是一个非常慢的存储设备,我们在查询数据的时候,最好能在尽可能少的磁盘 I/0 的操作次数内完成。

二分查找树虽然是一个天然的二分结构,能很好的利用二分查找快速定位数据,但是它存在一种极端的情况,每当插入的元素都是树内最大的元素,就会导致二分查找树退化成一个链表,此时查询复杂度就会从 O(logn)降低为 O(n)。

为了解决二分查找树退化成链表的问题,就出现了自平衡二叉树,保证了查询操作的时间复杂度就会一直维持在 O(logn) 。但是它本质上还是一个二叉树,每个节点只能有 2 个子节点,随着元素的增多,树的高度会越来越高。

而树的高度决定于磁盘 I/O 操作的次数,因为树是存储在磁盘中的,访问每个节点,都对应一次磁盘 I/O 操作,也就是说树的高度就等于每次查询数据时磁盘 IO 操作的次数,所以树的高度越高,就会影响查询性能。

B 树和 B+ 都是通过多叉树的方式,会将树的高度变矮,所以这两个数据结构非常适合检索存于磁盘中的数据。

但是 MySQL 默认的存储引擎 InnoDB 采用的是 B+ 作为索引的数据结构,原因有:

  • B+ 树的非叶子节点不存放实际的记录数据,仅存放索引,因此数据量相同的情况下,相比存储即存索引又存记录的 B 树,B+树的非叶子节点可以存放更多的索引,因此 B+ 树可以比 B 树更「矮胖」,查询底层节点的磁盘 I/O次数会更少。
  • B+ 树有大量的冗余节点(所有非叶子节点都是冗余索引),这些冗余索引让 B+ 树在插入、删除的效率都更高,比如删除根节点的时候,不会像 B 树那样会发生复杂的树的变化;
  • B+ 树叶子节点之间用链表连接了起来,有利于范围查询,而 B 树要实现范围查询,因此只能通过树的遍历来完成范围查询,这会涉及多个节点的磁盘 I/O 操作,范围查询效率不如 B+ 树。

完!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/528799.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言-函数指针-快速排序算法(书籍示例-入门)

概述 使用C语言,实现结构体多元素,排序算法(冒泡排序),这里使用示例:书籍示例讲解 函数简介 函数声明 void qsort(void *base, size_t nitems, size_t size, int (*compar)(const void *, const void*)) 参…

一维差分数组

797. 差分 输入一个长度为 n 的整数序列。接下来输入 m 个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c。 请你输出进行完所有操作后的序列。 输入格式 第一行包含两个整数 n和 m 第二行包含 n个整数,表示整数序…

Redis Stack 安装部署

参考:Run Redis Stack on Docker | Redis Redis-stack 初体验_redis stack-CSDN博客 【docker】运行redis_docker run redis-stack-server requirepass-CSDN博客 Redis Stack 是一组软件套件,它主要由三部分组成。 一个是 Redis Stack Server&#x…

【HTB】 OpenSource

OpenSource 靶机地址:https://app.hackthebox.com/machines/471 信息收集 ┌──(root㉿kali)-[~/Desktop] └─# nmap -Pn -sC -sV -p- 10.129.212.208 --min-rate5000 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-04-08 16:01 CST Nmap scan report f…

Nginx服务 重写功能与反向代理

六、重写功能 rewrite Nginx服务器利用 ngx_http_rewrite_module 模块解析和处理rewrite请求,此功能依靠 PCRE(perl compatible regular expression),因此编译之前要安装PCRE库,rewrite是nginx服务器的重要功能之一,用于实现URL的…

Unity 世界坐标、屏幕坐标、UGUI 坐标 相互转换

Unity 世界坐标、屏幕坐标、UGUI 坐标 相互转换坐标转换是游戏开发过程中必不可少的环节 看下图 世界坐标、屏幕坐标、UI 坐标 三种坐标系的转换过程,此文章中的 UI 坐标特指 UGUI 坐标 从上图可以看到,世界坐标 和 UI 坐标 需要通过 屏幕坐标作为中间转…

MemberPress配置和使用会员登录页面

目录 隐藏 创建会员登录页面 编辑登录页面 设计您的登录页面 链接到您的登录页面 创建会员登录页面 要创建MemberPress会员登录页面,您需要做的就是导航到 MemberPress > 设置 > 页面选项卡,然后在页面顶部附近的“MemberPress 登录页面”…

面试官脑子有病系列:为什么 HashMap 是线程不安全的?

文章目录 前言HashMap为啥线程不安全?HashMap线程不安全的根本原因put 方法中的非原子性操作扩容时的非原子性操作 安全的HashMap总结 前言 Hi,大家好,我是王二蛋。 我们在面试的时候,经常会被问到一些有的没的、看似高深但与日…

科技型中小企业怎么做

在当今快速发展的科技时代,科技型中小企业扮演着越来越重要的角色。这些企业不仅推动了技术创新,还为经济增长和社会进步做出了巨大贡献。那么,科技型中小企业应如何制定并执行其发展战略呢? 1. 明确定位与战略规划 对于任何企业…

SD-WAN为出海电商提供了什么支持

出海电商行业的持续发展与壮大,使得网络连接的稳定性和效率成为其成功的关键因素。SD-WAN(软件定义广域网)作为一种先进的网络解决方案,为出海电商提供了诸多优势和支持。 首先,SD-WAN通过智能路由技术,能够…

华火电焰灶测评:电焰灶十大品牌哪个好?实力排名怎么样?

华火新能源电焰灶作为现代厨房技术的一大创新,近年来受到了广泛关注。在新能源电焰灶市场中,目前只有华火品牌具有独立研发、独立生产、品质背书、完善服务等雄厚的综合实力;而华火品牌凭借其独特的技术和优势,与其他传统燃气灶品…

EDM邮件群发推广多少钱?有哪些优势?

电子邮件营销(Electronic Direct Mail, EDM)以其高性价比、精准定向与可度量效果的优势,成为众多企业不可或缺的营销策略。云衔科技,作为企业数字广告营销和SaaS软件服务的领军者,以其创新的智能EDM邮件营销系统解决方…

2024 工业物联网通信与网络安全国际学术会议(IIOTNS 2024)

【会议英文官网】:www.iiotns2024.org 【会议时间】: 2024年5月10-12日 【一轮截稿时间】: 2024年3月10-12日 所有于一轮截稿时间之前投稿,后续通过审核并被大会录用的稿件享早鸟优惠:单篇立减400元!&am…

如何快速识别陶瓷件的外观缺陷吗?

陶瓷件由陶瓷材料制成的物品或零部件,通常用于装饰、日常生活用品、工艺品或工业应用。陶瓷是一种非金属材料,具有耐高温、耐磨损、绝缘、化学稳定等特性,因此在许多领域得到广泛应用。 本案针对陶瓷件尺寸长25mm*宽11mm*高2mm的产品的外观检…

HarmonyOS 应用开发-ArkUI事件机制

ArkUI提供了事件机制,这些事件提供了不同的信息用于处理程序交互逻辑,ArKUI事件按照功能来讲,可以分为以下几种: 点击事件触摸事件挂载卸载事件拖拽事件按键事件焦点事件鼠标事件组件区域变化事件组件可见区域变化事件组件快捷键…

C++ primer 第十八章

C语言的三大特性:异常处理、命名空间、多重继承。 1.异常处理 异常处理机制允许我们能够将问题的检测与解决过程分离开来。 1.1、抛出异常 在C语言中,我们通过抛出一条表达式来引发一个异常。 当执行一个throw时,程序的控制权从throw转移…

T527 Qt 触摸 ----- TSLIB

一、调试 1、驱动路径 bsp/drivers/input/ctp/gt9xx/gt9xx_ts.c 2、硬件接口 挂载在TWI0下 3、中断复位脚 4、设备树 &twi0 {clock-frequency <400000>;pinctrl-0 <&twi0_pins_default>;pinctrl-1 <&twi0_pins_sleep>;pinctrl-names &quo…

SpringBoot 定时任务实践、定时任务按指定时间执行

Q1. springboot怎样创建定时任务&#xff1f; 很显然&#xff0c;人人都知道&#xff0c;Scheduled(cron ".....") Q2. 如上所示创建了定时任务却未能执行是为什么&#xff1f; 如果你的cron确定没写错的话 cron表达式是否合法&#xff0c;可参考此处&#xff0c…

MAC苹果电脑如何使用Homebrew安装iperf3

一、打开mac终端 找到这个终端打开 二、终端输入安装Homebrew命令 Homebrew官网地址&#xff1a;https://brew.sh/ 复制这个命令粘贴到mac的终端窗口&#xff0c;然后按回车键 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/in…

ModuleNotFoundError: No module named ‘ultralytics.utils‘

项目场景he 问题描述 提示&#xff1a;这里简述项目相关背景&#xff1a; model YOLO(modelr./yolov8m-cls.pt) 加载预训练模型时报错。 ModuleNotFoundError: No module named ultralytics.utils warning: bug: 原因分析&#xff1a; 很可能是提前下载的预训练模型出了…