FPN网络

FPN(Feature Pyramid Network)是一种用于目标检测和语义分割等计算机视觉任务的网络结构。它旨在解决不同尺度下的特征信息不足的问题,提高模型对小目标和远距离目标的检测能力。在目标检测任务中,由于目标的尺度和形状各异,同一个目标可能在不同尺度下具有不同的外观。因此,单一尺度下的特征可能无法充分捕捉到不同尺度目标的特征信息,从而影响检测的准确性和鲁棒性。

FPN主要解决的问题包括:

1. **多尺度信息融合:** FPN通过构建特征金字塔,将来自不同尺度的特征信息进行融合,从而获取更全面、更丰富的多尺度特征表示。

2. **解决小目标检测困难:** 对于小目标,由于其尺寸较小,常常会在高层特征中失去信息,导致难以准确检测。FPN通过自顶向下的特征传播过程,将高层特征与底层特征相结合,提供更丰富的语义信息,有助于提高对小目标的检测能力。

3. **减少计算成本:** FPN在特征金字塔的构建中使用了共享的特征提取网络,避免了重复计算,从而降低了计算成本。

综上所述,FPN通过构建特征金字塔并结合自顶向下的特征传播机制,有效地解决了目标检测中的多尺度问题,提高了模型对不同尺度目标的检测性能。

FPN的主要思想是利用多尺度特征金字塔来融合不同层级的特征信息,以获取更丰富的语义信息。它包含两个主要组件:
1. **特征金字塔网络(Feature Pyramid):** FPN通过自顶向下和自底向上的方式构建特征金字塔,从不同层级的特征图中提取多尺度的语义信息。通常,特征金字塔由底层到顶层的特征图组成,每个特征图都对应不同的尺度。
2. **横向连接(Lateral Connection):** FPN通过横向连接将低层级的高分辨率特征图与高层级的低分辨率特征图相结合,以获取更丰富的语义信息。这样可以使得网络在不同尺度下都能够获得高质量的特征表示。

       通过利用FPN,可以有效地提高目标检测和语义分割模型在多尺度场景下的性能。FPN被广泛应用于一系列计算机视觉任务中,包括目标检测、语义分割、实例分割等。

FPN的基本步骤 

FPN(Feature Pyramid Network)的基本步骤如下:

1. **构建特征金字塔:** 首先,从底层到顶层构建特征金字塔,每一层都对应不同尺度的特征图。这可以通过在卷积神经网络(CNN)中添加额外的层级或通过下采样(如池化或步幅卷积)来实现。

2. **自底向上路径(Bottom-up Pathway):** 在构建特征金字塔时,从底层到顶层逐步提取特征。通常,这些特征具有不同的分辨率和语义级别。

3. **自顶向下路径(Top-down Pathway):** 在自底向上路径之后,建立自顶向下的路径,通过上采样或插值操作将较低层级的特征图上采样到与较高层级特征图相同的尺寸。

4. **横向连接(Lateral Connection):** 自底向上和自顶向下路径相结合,通过横向连接将来自底层的高分辨率特征图与来自顶层的低分辨率特征图相结合。这些横向连接可以通过简单的1x1卷积操作来实现。

5. **特征融合(Feature Fusion):** 将来自不同层级的特征图融合在一起,以产生最终的多尺度特征图。通常,这可以通过简单地对特征图进行逐元素相加或级联来实现。

6. **应用于任务:** 最终的多尺度特征图可以被应用于目标检测、语义分割等计算机视觉任务中,以提高模型在不同尺度下的性能。

通过这些步骤,FPN能够有效地提取多尺度的语义信息,从而提高模型在多尺度场景下的性能。

金字塔框架介绍 

图1。 (a) 使用图像金字塔构建特征金字塔。特征在每个图像尺度上独立计算,这种方法速度较慢。 (b) 最近的检测系统选择仅使用单尺度特征以实现更快的检测。 (c) 另一种方法是重用由ConvNet计算的金字塔特征层次结构,就像它是一个具有特征化的图像金字塔一样。 (d) 我们提出的特征金字塔网络(FPN)既像(b)和(c)一样快速,又更精确。在这个图中,特征图由蓝色轮廓表示,较粗的轮廓表示语义上更强的特征。

如上图1所示,识别不同尺度的物体是计算机视觉的一个基本挑战,论文列举了几种不同的实现方式。

(a)是图像金字塔,在传统图像处理算法中用得比较多,就是将图片resize到不同的大小,然后分别得到对应大小的特征,然后进行预测。这种方法虽然可以一定程度上解决多尺度的问题,但是很明显,带来的计算量也非常大。

(b) 使用单个feature map进行检测,这种结构在17年的时候是很多人在使用的结构,比如YOLOv1、YOLOv2、Faster R-CNN中使用的就是这种架构。直接使用这种架构导致预测层的特征尺度比较单一,对小目标检测效果比较差

(c) 像SSD(Single Shot Detector)采用这种多尺度特征融合的方式,没有上采样过程,即从网络不同层抽取不同尺度的特征做预测,这种方式不会增加额外的计算量,但是不同的层次的特征图有巨大的语义差距,高分辨率的特征图只有低级特征,损害了表示能力,不利于目标识别。作者认为SSD算法中没有用到足够低层的特征(在SSD中,最低层的特征是VGG网络的conv4_3),而在作者看来足够低层的特征对于检测小物体是很有帮助的。

(d) 经典FPN架构,通过自顶向下和自底向上的路径来构建特征金字塔自底向上的路径是指从低层特征图开始,通过下采样操作逐渐减小特征图的分辨率,同时增加其语义信息。自顶向下的路径是指从顶层特征图开始,通过上采样操作逐渐增加特征图的分辨率。还引入了横向连接,用于在自顶向下自底向上的路径之间传递信息。

 图3展示了横向连接和自顶向下路径的构建模块,通过加法进行合并。

① 自底向上:

自底向上的过程通常是指从网络的低层级特征开始逐步提取特征,直到达到网络的顶层。这个过程通常发生在卷积神经网络(Convolutional Neural Network,CNN)中,用于图像处理和计算机视觉任务。

在自底向上的过程中,每个网络层都会逐步提取出越来越抽象和高级别的特征信息。这些特征信息的提取是通过卷积操作和池化操作等方式来实现的。在网络的早期层级,提取的特征通常与图像的低层次结构相关,例如边缘和纹理等。随着网络层级的增加,提取的特征则变得更加抽象和语义化,例如对象的形状、纹理、和特定部位等。

自底向上的过程在构建特征金字塔(Feature Pyramid)和构建特征融合网络(如FPN)等任务中经常被使用。通过利用这种自底向上的特征提取方式,可以获得多尺度的特征表示,从而提高模型在目标检测、语义分割等任务中的性能。

② 自顶向下:

自顶向下的过程通常是指从网络的顶层开始向下传播信息,逐步细化和调整特征以适应任务的需要。这个过程通常发生在层次性模型或者金字塔结构中,例如特征金字塔网络(Feature Pyramid Network,FPN)等。

在自顶向下的过程中,最初的输入是来自网络的高层特征,这些特征通常具有较高的语义信息和较低的分辨率。然后,这些高层特征通过上采样或者插值操作被扩展到与底层特征相同的尺寸,并通过横向连接与底层特征进行融合。这个过程可以逐步地提高特征的分辨率和精细度,从而增强特征的语义信息并改善模型在任务中的性能。

自顶向下的过程通常用于构建特征金字塔网络(FPN)等结构,在目标检测和语义分割等任务中取得了广泛的应用。通过利用自顶向下的特征传播方式,可以有效地提取多尺度的语义信息,并帮助模型更好地理解图像内容。

③ 横向连接:

采用1×1的卷积核进行连接(减少特征图数量)。

部分参考自:

 目标检测之FPN网络详解-CSDN博客

FPN特征金字塔,插值--学习笔记 - 知乎 

https://www.cnblogs.com/harrymore/p/17452884.html 

重读FPN(Feature Pyramid Network) - 知乎 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/527344.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

聚观早报 | 百度文心一言上线新功能;腾势Z9GT将发布

聚观早报每日整理最值得关注的行业重点事件,帮助大家及时了解最新行业动态,每日读报,就读聚观365资讯简报。 整理丨Cutie 4月08日消息 百度文心一言上线新功能 腾势Z9GT将发布 华为将举办鸿蒙春季沟通会 苹果与Shutterstock达成协议 O…

ebpf+perfetto实现调度延迟记录与展示

1.背景 需要分析生产环境的调度问题,如线程的调度延迟有多少,在哪些时间点延迟比较明显,影响其调度的主要原因是什么?其次,我们希望可以比较直观的展示调度延迟情况。最好能对接perfetto的UI和后处理,因为perfetto已经用于分析比较多的性能数据,可以和调度数据进行整合.我们…

Dify开源大语言模型(LLM) 应用开发平台如何使用Docker部署与远程访问

文章目录 1. Docker部署Dify2. 本地访问Dify3. Ubuntu安装Cpolar4. 配置公网地址5. 远程访问6. 固定Cpolar公网地址7. 固定地址访问 本文主要介绍如何在Linux Ubuntu系统以Docker的方式快速部署Dify,并结合cpolar内网穿透工具实现公网远程访问本地Dify! Dify 是一款…

性能优化 - 你知道开发React项目中,可以做哪些性能优化吗

难度级别:中高级及以上 提问概率:75% 在React项目开发中,面临着比较大的问题就是组件更新以及重复渲染的问题,基于这两点,我们可以在日常开发工作中,可以通过以下几点,来提升React的性能,加快组件更新对比,避免过多的重复渲染问题。 …

用国内版Devin:DevOpsGPT开发一个简易官网

前言: 世界上第一个AI程序员Devin想必已经给大家带来了不小的震撼,这种L4级的技术也许已经昭示着AGI离我们或许真的不远了。 这里先给大家普及一个概念: L4是谷歌对AGI划分的第四个等级,把代码丢给 AI 改这个是 L1 或者 L2 级别的…

iOS-获取Xcode工程中文件的路径

1、使用Create folder references的Add folders的方式把文件或者文件夹拖到Xcode工程中 拖入时的设置参考下图 注意拖入到工程之后文件夹是蓝色的(Xcode10.1环境) 2、代码具体实现: 使用NSBundle的API,然后拼接具体路径即可 NS…

RabbitMQ基本使用及企业开发中注意事项

目录 一、基本使用 二、使用注意事项 1. 生产者重连机制 - 保证mq服务是通的 2. 生产者确认机制 - 回调机制 3. MQ的可靠性 4. Lazy Queue模式 5. 消费者确认机制 一、基本使用 部署完RabbitMQ有两种使用方式: 网页客户端Java代码 MQ组成部分:…

uniapp开发笔记----配置钉钉小程序

uniapp开发笔记----配置钉钉小程序 1. 项目根目录添加package.json文件2. 之后点击运行就可以看到已经添加了钉钉小程序3. 如果首次使用需要配置 其他功能待开发。。。 接上一章之后,我想要把项目配置成钉钉小程序 官方文档点击这里 1. 项目根目录添加package.json…

专业140+总410+国防科技大学831信号与系统考研经验国防科大电子信息与通信,真题,大纲,参考书。

应群里同学要求,总结一下我自己的复习经历,希望对大家有所借鉴,报考国防科技大学,专业课831信号与系统140,总分410,大家以前一直认为国防科技大学时军校,从而很少关注这所军中清华,现…

第七篇:3.6 其他评估考虑/4.审计指南/5. 通用报告规范/6.披露指南、参考标准及其他 - IAB/MRC及《增强现实广告效果测量指南1.0》

翻译计划 第一篇概述—IAB与MRC及《增强现实广告效果测量指南》之目录、适用范围及术语第二篇广告效果测量定义和其他矩阵之- 3.1 广告印象(AD Impression)第三篇广告效果测量定义和其他矩阵之- 3.2 可见性 (Viewability)第四篇 …

【网络】什么是RPC

RPC 是Remote Procedure Call的缩写,译为远程过程调用。是一个计算机通信协议。 1、为什么需要远程调用 在如何给女朋友解释什么是分布式这一篇文章中介绍过,为了提升饭店的服务能力,饭店从一开始只有一个负责所有事情的厨师发展成有厨师、切…

Mac清理缓存哪些文件夹可以清理 Mac清理缓存怎么操作 Mac清理缓存快捷键 cleanmymac值不值得买

缓存文件属于电脑临时保存数据的一种文件,它的存在可以帮助电脑快速打开网页,减少缓存的时间。但是如果用户不主动清除这些缓存,时间一长它们会占用磁盘空间,影响系统性能和稳定性。因此,养成定期给Mac做内存缓存垃圾清…

C++奇迹之旅:我与类和对象相遇

文章目录 📝面向过程和面向对象初步认识🌠 类🌉类的引入🌉类的定义 🌠类的访问限定符🌠访问限定符 🌠类的两种定义方式🌉封装 🚩总结 📝面向过程和面向对象初…

python+django+flask+vue贫困地区儿童资助网站22pk7

Python 中存在众多的 Web 开发框架:Flask、Django、Tornado、Webpy、Web2py、Bottle、Pyramid、Zope2 等。近几年较为流行的,大概也就是 Flask 和 Django 了 一开始,本文就对系统内谈到的基本知识,从整体上进行了描述&#xff0c…

【鸿蒙开发】系统组件Row

Row组件 Row沿水平方向布局容器 接口: Row(value?:{space?: number | string }) 参数: 参数名 参数类型 必填 参数描述 space string | number 否 横向布局元素间距。 从API version 9开始,space为负数或者justifyContent设置为…

万界星空科技工时管理系统功能介绍

一、工时管理系统的功能 1、工时记录与统计 工时管理系统提供了便捷的工时记录和统计功能。员工可以通过系统记录每天的上班时间、下班时间以及休息时间,系统会自动计算工作时长并生成工时统计报表。这一功能不仅能够准确记录员工的工作时间,还能够帮助…

基于大数据的汽车信息可视化分析预测与推荐系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 本项目通过集成网络爬虫技术,实时获取海量汽车数据;运用先进的ARIMA时序建模算法对数据进行深度挖掘和分析;结合flask web系统和echarts可视化工具,…

如何在Rust中操作JSON

❝ 越努力,越幸运 ❞ 大家好,我是「柒八九」。一个「专注于前端开发技术/Rust及AI应用知识分享」的Coder。 前言 我们之前在Rust 赋能前端-开发一款属于你的前端脚手架中有过在Rust项目中如何操作JSON。 由于文章篇幅的原因,我们就没详细介绍…

QT 使用redis ,连接并使用

一.redis安装 链接:https://pan.baidu.com/s/17fXKOj5M4VIypR0y5_xtHw 提取码:1234 1.下载得到文件夹如图 course_redis为安装包。 2.启动Redis服务 把安装包解压到某个路径下即可。 打开cmd窗口,切换到Redis安装路径,输入 r…

微服务初始及Eureka注册中心

1,架构演变 单体架构:将所有业务功能集中在一个项目中开发,达成一个包部署 优点:架构简单,部署成本低 缺点:项目耦合度高 分布式架构:根据业务功能对系统进行拆分,每个业务作为独…