opencv图像处理技术(阈值处理与图像平滑)

进行图像处理时,常常需要对图像进行预处理以提取所需的信息或改善图像质量。阈值处理和图像平滑是两种常见的预处理技术。

阈值处理

阈值处理是一种图像分割技术,其基本思想是将图像中的像素值与一个或多个预先设定的阈值进行比较,根据比较结果将像素分为不同的类别,通常是目标和背景。主要包括二值化、自适应阈值处理等方法。

  • 二值化:将图像像素值转换为两个值之一(通常是0或255),使图像呈现出明显的目标和背景。
  • 自适应阈值处理:根据图像局部特性调整阈值,从而在不同区域获得更好的分割效果。

图像平滑

图像平滑是一种用于去除图像中噪声或细节的技术,其主要目的是使图像变得更加平滑或模糊,以减少噪声对后续处理步骤的影响。常见的图像平滑方法包括均值滤波、高斯滤波、中值滤波等。

  • 均值滤波:将图像中每个像素的值替换为其周围邻域像素值的平均值,用于平滑图像并减少噪声。
  • 高斯滤波:在均值滤波的基础上,考虑了像素之间的权重,使得离中心像素越近的像素具有更高的权重,从而更加自然地模拟图像的模糊效果。
  • 中值滤波:将图像中每个像素的值替换为其周围邻域像素值的中值,对于去除椒盐噪声等斑点噪声效果较好。

任务1 阈值处理基础:

1简单阈值法

简单阈值处理是阈值处理的一种基本形式,它将图像中的像素值与一个固定的阈值进行比较,并根据比较结果将像素值分为两类。以下是简单阈值处理的基本步骤:

  1. 读取图像: 首先,需要读取待处理的图像。

  2. 设定阈值: 简单阈值处理需要设定一个固定的阈值,用来将像素值分为两类,通常为目标和背景。例如,当阈值设定为128时,大于128的像素值被设为一个值(通常为255),小于等于128的像素值被设为另一个值(通常为0)。

  3. 进行阈值处理: 使用设定的阈值对图像进行处理,将像素值分为两类。

  4. 显示处理后的图像: 最后,显示处理后的图像,观察分割效果。

代码:

import cv2
import numpy as np

# 读取彩色图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dcz.jpg", cv2.IMREAD_COLOR)

# 将彩色图像转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用简单阈值处理
ret, thresh1 = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)

# 显示图像
cv2.imshow('原始图像', img)
cv2.imshow('灰度图像', gray)
cv2.imshow('二值化图像', thresh1)

cv2.waitKey(0)
cv2.destroyAllWindows()

结果如图: 

2 0tsu阈值处理

Otsu 阈值处理是一种自动确定阈值的方法,它可以根据图像的灰度直方图自动选择最佳阈值,从而进行图像分割。

代码:

import cv2

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dcz.jpg")

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用Otsu阈值处理
ret, otsu = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

# 显示原始灰度图像和Otsu二值化图像
cv2.imshow('原始灰度图像', gray)
cv2.imshow('Otsu二值化图像', otsu)

cv2.waitKey(0)
cv2.destroyAllWindows()

结果如图:

3自适应阈值处理

自适应阈值处理是一种根据图像局部特性动态调整阈值的方法,适用于图像局部光照变化较大或者全局阈值不适用的情况。与简单阈值处理不同,自适应阈值处理不使用固定的阈值,而是根据图像的局部区域计算每个像素的阈值。

代码:

import cv2

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dcz.jpg")

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 使用均值自适应阈值处理
# cv2.adaptiveThreshold() 函数参数说明:
# gray:输入的灰度图像
# 255:目标像素的最大值
# cv2.ADAPTIVE_THRESH_MEAN_C:使用均值作为阈值计算方式
# cv2.THRESH_BINARY:二值化类型,将大于阈值的像素设置为255,小于阈值的像素设置为0
# 7:块大小,表示在块内计算局部阈值时所使用的像素邻域大小
# 5:从计算的均值或加权均值中减去的常数,用于调整阈值大小
athdMEAN = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 7, 5)

# 使用高斯加权自适应阈值处理
# cv2.adaptiveThreshold() 函数参数说明:
# gray:输入的灰度图像
# 255:目标像素的最大值
# cv2.ADAPTIVE_THRESH_GAUSSIAN_C:使用高斯加权均值作为阈值计算方式
# cv2.THRESH_BINARY:二值化类型,将大于阈值的像素设置为255,小于阈值的像素设置为0
# 5:块大小,表示在块内计算局部阈值时所使用的像素邻域大小
# 3:从计算的均值或加权均值中减去的常数,用于调整阈值大小
athdGAUS = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 5, 3)

# 显示均值自适应阈值处理结果和高斯加权自适应阈值处理结果
cv2.imshow('均值自适应阈值处理', athdMEAN)
cv2.imshow('高斯加权自适应阈值处理', athdGAUS)

cv2.waitKey(0)
cv2.destroyAllWindows()

结果如图:

 任务2:使用滑动条调整阈值

使用滑动条调整阈值是一种交互式调整图像处理参数的方法,对于调试和优化图像处理算法非常有用。在OpenCV中,可以使用cv2.createTrackbar()函数创建滑动条,并为其指定回调函数,以便在滑动条值发生变化时执行相应的操作。

代码:

import cv2
import numpy as np

# 定义一个空函数,用作滑动条回调函数
def nothing(x):
    pass

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dcz.jpg")

# 定义窗口名称
windowName = "dcz_Thresholding"

# 创建一个窗口
cv2.namedWindow(windowName, cv2.WINDOW_AUTOSIZE)

# 创建两个滑动条,一个用于选择阈值类型,另一个用于选择阈值的具体数值
cv2.createTrackbar('Type', windowName, 0, 4, nothing)  # 阈值类型
cv2.createTrackbar('Value', windowName, 0, 255, nothing)  # 阈值数值

while True:
    # 按下ESC键退出循环
    if cv2.waitKey(1) & 0xFF == 27:
        break
    
    # 获取滑动条的当前位置
    Type = cv2.getTrackbarPos('Type', windowName)  # 获取阈值类型
    Value = cv2.getTrackbarPos('Value', windowName)  # 获取阈值数值

    # 根据滑动条的值应用阈值处理
    ret, dst = cv2.threshold(img, Value, 255, Type)

    # 显示处理后的图像
    cv2.imshow(windowName, dst)

# 关闭所有窗口
cv2.destroyAllWindows()

结果如图:

任务巩固:

如果你想要创建RGB颜色表,你可以使用滑动条来调整每个通道的颜色值,以实现动态调整颜色表的效果。

下面是一个简单的示例,演示如何使用滑动条来创建RGB颜色表:

代码:

import cv2
import numpy as np

# 定义一个空函数,用作滑动条回调函数
def nothing(x):
    pass

# 创建一个空白图像作为颜色表
img = np.zeros((512, 512, 3), np.uint8)

# 定义窗口名称
windowName = "RGB Color Map"

# 创建三个滑动条,分别用于调整红色、绿色和蓝色通道的值
cv2.namedWindow(windowName, cv2.WINDOW_AUTOSIZE)
cv2.createTrackbar('R', windowName, 0, 255, nothing)  # 红色通道滑动条
cv2.createTrackbar('G', windowName, 0, 255, nothing)  # 绿色通道滑动条
cv2.createTrackbar('B', windowName, 0, 255, nothing)  # 蓝色通道滑动条

while True:
    # 按下ESC键退出循环
    if cv2.waitKey(1) & 0xFF == 27:
        break
    
    # 获取滑动条的当前位置
    r = cv2.getTrackbarPos('R', windowName)  # 获取红色通道值
    g = cv2.getTrackbarPos('G', windowName)  # 获取绿色通道值
    b = cv2.getTrackbarPos('B', windowName)  # 获取蓝色通道值

    # 更新图像颜色
    img[:] = [b, g, r]  # 赋值BGR颜色

    # 显示颜色图像
    cv2.imshow(windowName, img)

# 关闭窗口
cv2.destroyAllWindows()

结果如图:

 任务3:平滑处理基础

平滑处理是图像处理中常见的一种技术,用于减少图像中的噪声或细节,使图像更加平滑和均匀。常用的平滑处理方法包括均值滤波、中值滤波、高斯滤波等。

  1. 均值滤波:将图像中每个像素的值替换为其周围像素值的平均值。这种方法适用于轻度噪声的去除,但可能会导致图像边缘变得模糊。OpenCv里可以用 cv2.blur(src, ksize,  anchor, borderType)  src:这是输入的图像,可以是灰度图像或者彩色图像。ksize:这是指定的核大小,通常是一个奇数。它指定了在进行均值滤波时考虑的像素邻域大小。例如,如果 ksize 为 3,那么在进行均值滤波时,对于每个像素,它的邻域大小是 3x3。anchor:这是可选参数,表示核的锚点,默认值为 (-1, -1),即表示核的中心点。如果指定了其他值,则表示核的锚点位置。borderType:这是可选参数,表示图像边界的处理方式,默认值为 cv2.BORDER_DEFAULT。可以使用不同的边界处理方式,如 cv2.BORDER_CONSTANTcv2.BORDER_REPLICATE 等。

  2. 中值滤波:将图像中每个像素的值替换为其周围像素值的中值。中值滤波对于椒盐噪声等非线性噪声有较好的去除效果,且不会使图像边缘模糊。OpenCV里可以使用cv2.medianBlur(img,ksize)函数来实现。        

  3. img:这是输入的图像,可以是灰度图像或者彩色图像。

  4. ksize:这是中值滤波核的大小,通常是一个奇数。它指定了在进行中值滤波时考虑的像素邻域大小。例如,如果 ksize 为 3,那么在进行中值滤波时,对于每个像素,它的邻域大小是 3x3。中值滤波器将在这个邻域内计算像素值的中值,并将该中值作为该像素的新值。中值滤波器的工作原理是通过取邻域内像素的中值来去除图像中的噪声,而不会模糊边缘或细节

  5. 高斯滤波:利用高斯函数对图像进行加权平均,降低图像中高频部分的影响,从而实现平滑效果。高斯滤波常用于去除高斯噪声,同时保留图像细节。cv2.GaussianBlur(source,(3,3),0)
    第一个参数为图像对象
    第二个参数为滤波核
    第三个参数0为高斯核标准差

  6. 双边滤波是一种非线性滤波器,它在平滑图像的同时保留了边缘的信息。相比于其他平滑滤波器,双边滤波器考虑了像素之间的空间距离和像素值之间的灰度相似性。这使得它能够在去除噪声的同时保持图像的边缘清晰。在opencv中,用户可以使用cv2.bilateralFilter()函数实现对图像双边滤波处理.cv2.bilateralFilter(img,d,sigmaColor,sigmaSpace)

  7. img表示原图     d 表示滤波要采取的空间距离参数   sigmaColor:这个参数控制了在颜色空间中的标准差,它影响了颜色相似度的权重。较大的sigmaColor值会使得颜色更加容易混淆,因此滤波器会更加宽松地认为颜色相似。通常情况下,当图像中的噪声较强时,可以增大sigmaColor以增强滤波效果,但同时也会模糊边缘。sigmaSpace:这个参数控制了在空间距离上的标准差,它影响了空间相似度的权重。较大的sigmaSpace值意味着更广泛的空间距离内的像素将被考虑在内,即使它们的颜色差异较大,也可能被认为是相似的。增大sigmaSpace可以使得更远的像素对平滑过程产生影响,这样可以更好地保留图像的整体结构。

均值滤波代码

import cv2
import numpy as np

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dcz.jpg")

# 对图像进行均值滤波处理,模糊半径为7x7
blur = cv2.blur(img, (7, 7))

# 显示原始图像
cv2.imshow('原始图像', img)

# 显示经过均值滤波处理后的图像
cv2.imshow('均值滤波处理后的图像', blur)

# 等待按键事件
cv2.waitKey(0)

# 关闭所有窗口
cv2.destroyAllWindows()

 结果如图:

高斯滤波 代码:

import cv2
import numpy as np

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dcz.jpg")

# 对图像进行高斯滤波处理,卷积核大小为7x7,标准差为10
gaussianBlur = cv2.GaussianBlur(img, (7, 7), 10)

# 显示原始图像
cv2.imshow('原始图像', img)

# 显示经过高斯滤波处理后的图像
cv2.imshow('高斯滤波处理后的图像', gaussianBlur)

# 等待按键事件
cv2.waitKey(0)

# 关闭所有窗口
cv2.destroyAllWindows()

 结果如图:

 中值滤波代码

import cv2
import numpy as np

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dcz.jpg")

# 对图像进行中值滤波处理,核大小为7x7
median = cv2.medianBlur(img, 7)

# 显示原始图像
cv2.imshow('原始图像', img)

# 显示经过中值滤波处理后的图像
cv2.imshow('中值滤波处理后的图像', median)

# 等待按键事件
cv2.waitKey(0)

# 关闭所有窗口
cv2.destroyAllWindows()

结果如图:

双边滤波代码:

import cv2
import numpy as np

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dczGaussian.jpg")

# 对图像进行双边滤波处理,核大小为15,空间高斯标准差为300,灰度值相似性标准差为300
bilaterBlur = cv2.bilateralFilter(img, 15, 300, 300)

# 显示原始图像
cv2.imshow('原始图像', img)

# 显示经过双边滤波处理后的图像
cv2.imshow('双边滤波处理后的图像', bilaterBlur)

# 等待按键事件
cv2.waitKey(0)

# 关闭所有窗口
cv2.destroyAllWindows()

结果如图:

四种滤波结合在一起:

import cv2
import numpy as np

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dcz.jpg")

# 均值滤波
blur = cv2.blur(img, (7, 7))

# 方框滤波
box = cv2.boxFilter(img, -1, (7, 7), normalize=True)

# 高斯滤波
gaussian = cv2.GaussianBlur(img, (7, 7), 10)

# 中值滤波
median = cv2.medianBlur(img, 7)

# 双边滤波
bilater = cv2.bilateralFilter(img, 9, 75, 75)

# 自定义卷积核滤波
kernel = np.array(([-1, -1, 0],
                   [-1, 1, 1],
                   [0, 1, 2]), dtype="float32")
filter2D = cv2.filter2D(img, -1, kernel)

# 显示图像
cv2.imshow('img', img)
cv2.imshow('blur', blur)
cv2.imshow('box', box)
cv2.imshow('gaussian', gaussian)
cv2.imshow('median', median)
cv2.imshow('bilater', bilater)
cv2.imshow('filter2D', filter2D)

# 等待按键事件,关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

上面的结果图太多了就不一一列举了:

上面的代码展示了如何使用OpenCV库对图像进行不同类型的平滑处理。以下是代码的意义和思路:

  1. 导入必要的库:导入了OpenCV库和NumPy库,用于图像处理和数组操作。

  2. 读取图像:使用cv2.imread()函数读取了指定路径下的图像文件。

  3. 应用不同的平滑滤波器:

    • 均值滤波:用cv2.blur()函数对图像进行均值滤波,平滑图像以减少噪声。
    • 方框滤波:使用cv2.boxFilter()函数进行方框滤波,也是一种线性滤波方法。
    • 高斯滤波:调用cv2.GaussianBlur()函数应用高斯滤波,对图像进行平滑处理。
    • 中值滤波:使用cv2.medianBlur()函数对图像进行中值滤波,适用于去除椒盐噪声。
    • 双边滤波:调用cv2.bilateralFilter()函数应用双边滤波,保留边缘的同时平滑图像。
    • 自定义卷积核滤波:使用cv2.filter2D()函数应用自定义卷积核进行滤波处理。
  4. 显示处理后的图像:使用cv2.imshow()函数显示原始图像和经过不同滤波器处理后的图像。

  5. 等待按键事件和关闭窗口:使用cv2.waitKey(0)等待用户按下键盘按键,然后调用cv2.destroyAllWindows()关闭所有窗口。

 任务4使用滑动条进行平滑处理

使用滑动条进行平滑处理是一种常见的图像处理任务场景,通常用于调节滤波器的参数以实现不同程度的平滑效果。这种交互式的方式可以让用户直观地调整参数并实时观察处理后的图像效果,从而更好地理解不同滤波器的作用和影响。

在这个任务场景中,您可以创建一个图形用户界面(GUI),包含一个滑动条(Slider)和一些按钮,用于选择不同的滤波器和控制滤波器的参数。用户可以通过拖动滑动条来调整参数,实时看到图像的平滑效果。这种交互式的方式可以帮助用户更直观地理解不同滤波器的功能和效果。

使用滑动条调整阈值:

代码:

import cv2

# 回调函数,用于阈值处理
def Callback(a):
    # 获取滑动条当前位置
    Type = cv2.getTrackbarPos(tType, windowName)
    Value = cv2.getTrackbarPos(tValue, windowName)
    
    # 根据滑动条的值进行阈值处理
    ret, dat = cv2.threshold(img, Value, 255, Type)

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dczSalt.jpg", 0)

# 定义窗口名称
windowName = "Threshold"
cv2.namedWindow(windowName)

# 在窗口中显示图像
cv2.imshow(windowName, img)

# 定义滑动条名称
tType = "Type"
tValue = "Value"

# 创建滑动条
cv2.createTrackbar(tType, windowName, 0, 4, Callback)
cv2.createTrackbar(tValue, windowName, 0, 255, Callback)

# 等待按键事件
cv2.waitKey(0)

# 关闭所有窗口
cv2.destroyAllWindows()

结果如图:

 使用滑动条对图像镜像平滑处理

代码:

import cv2

# 回调函数,用于处理滑动条数值的变化
def onValue(a):
    # 获取滑动条当前位置
    Value = cv2.getTrackbarPos(tValue, windowName)
    
    # 根据滑动条的值进行中值滤波处理
    medianBlur = cv2.medianBlur(img, 2 * Value + 1)
    
    # 在窗口中显示中值滤波处理后的图像
    cv2.imshow(windowName, medianBlur)

# 读取图像
img = cv2.imread("C:/Users/win11/opencv/sucai4/dcz.jpg")

# 定义窗口名称
windowName = "medianBlur"
cv2.namedWindow(windowName)

# 在窗口中显示图像
cv2.imshow(windowName, img)

# 定义滑动条名称
tValue = "Value"

# 创建滑动条
cv2.createTrackbar(tValue, windowName, 0, 100, onValue)

# 等待按键事件
cv2.waitKey(0)

# 关闭所有窗口
cv2.destroyAllWindows()

结果如图:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/524243.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Git入门实战教程之创建版本库

一、Git简介 Git是一个分布式版本控制系,分层结构如下: Git分为四层: 1、工作目录 当前正在工作的项目的实际文件目录,我们执行命令git init时所在的地方,也就是我们执行一切文件操作的地方。 2、暂存区 暂存区是…

软件测试常考面试题-软件测试面试宝典(一篇足矣)

🔥 交流讨论:欢迎加入我们一起学习! 🔥 资源分享:耗时200小时精选的「软件测试」资料包 🔥 教程推荐:火遍全网的《软件测试》教程 📢欢迎点赞 👍 收藏 ⭐留言 &#x1…

数据库表设计18条黄金规则

前言 对于后端开发同学来说,访问数据库,是代码中必不可少的一个环节。 系统中收集到用户的核心数据,为了安全性,我们一般会存储到数据库,比如:mysql,oracle等。 后端开发的日常工作&#xff…

C语言初阶—9函数

函数的声明 (main函数前)----告诉有一个函数 格式: 类型 函数名(参数); 函数的声明 放到头文件add.c 函数的定义 ----创建函数----放到add.c 格式:类型 函数名(参数) { 语句项; } 在文…

leetcode.707. 设计链表

题目 题意: 在链表类中实现这些功能: get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1。 addAtHead(val):在链表的第一个元素之前添加一个值为 val 的节点。插入后,新节点将成为链表的…

Dubbo 序列化

Dubbo 序列化 1、什么是序列化和反序列化 序列化(serialization)在计算机科学的资料处理中,是指将数据结构或对象状态转换成可取用格式(例如存成文件,存于缓冲,或经由网络中发送),…

MySQL数据库基础--事务

事务 是一组操作的集合,他是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。 默认MySQL的事务是自动提交的,也就是说,当执行…

《C语言深度解剖》(2):详解C语言分支语句和循环

🤡博客主页:醉竺 🥰本文专栏:《C语言深度解剖》 😻欢迎关注:感谢大家的点赞评论关注,祝您学有所成! ✨✨💜💛想要学习更多数据结构与算法点击专栏链接查看&am…

Node操作mysql

配置 安装mysql模块 npm i mysql建立连接 const mysql require(mysql);const db mysql.createPool({host: 127.0.0.1,user: root,password: admin123,database: my_db_01 });测试 // select 1没有任何实质性作用 只是检查mysql模块是否正常 db.query(select 1, (err, results…

修电机所需要的基本工具

等距式 模具 同心式模具 电机划线刀 压脚 千分尺 -----测量线径 钳形电流表------- 测量 空载 满载下的电流值 摇表, 测量线圈是否碰到外壳 指针式万用表 胶锤 整理线圈 绝缘纸和青稞纸&#xf…

RuoYi-Vue若依框架-vue前端给对象添加字段

处理两个字段的时候有需求都要显示在下拉框的同一行,这里有两种解决方案,一是后端在实体类添加一个对象,加注解数据库忽略处理,在接口处拼接并传给前端,二是在前端获取的数据数组内为每个对象都添加一个字段&#xff0…

Ethernet 汇总

Ethernet系统 硬件最小系统 CPU:可以是复杂的芯片,也可以是小的单片机DMA:用于减轻CPU负担,搬运数据系统Memory<->FIFOMAC:可以集成在芯片里面,用于CPU和PHY之间的通信MII:接口用于MAC和PHY的通信,包括控制MDIO和数据DataPHY:模拟器件,最底层,数据收发源头软件…

Vue3【进阶】

简介 https://cn.vuejs.org/guide/introduction.html 创建vue3工程 【基于 vue-cli创建】 基本和vue-cli的过程类似&#xff0c;只是选择的时候用vue3创建 【基于vite创建】【推荐】 【官网】https://vitejs.cn/ 【可以先去学一下webpack】 步骤 【https://cn.vitejs.…

PostgreSQL入门到实战-第三弹

PostgreSQL入门到实战 PostgreSQL安装之linux官网地址PostgreSQL概述linux安装PostgreSQL更新计划 PostgreSQL安装之linux 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息为准 https://www.postgresql.org/PostgreSQL概述 Postg…

【全套源码教程】基于SpringBoot+MyBatis+Vue的流浪动物救助网站的设计与实现

目录 前言 需求分析 可行性分析 技术实现 后端框架&#xff1a;Spring Boot 持久层框架&#xff1a;MyBatis 前端框架&#xff1a;Vue.js 数据库&#xff1a;MySQL 功能介绍 前台界面功能介绍 动物领养及捐赠 宠物论坛 公告信息 商品页面 寻宠服务 个人中心 购…

AI视觉入门:卷积和池化

从2012年以AlexNet为代表的模型问世以来&#xff0c;人工智能尤其是视觉cv部分飞速发展&#xff0c;在刚开始效果不如人类&#xff0c;到2015年在ImageNet1000数据集的表现就超过了人类。在Transformer模型出现之前&#xff0c;视觉模型的主要组成部分就是卷积和池化&#xff0…

在家也能赚钱!长期副业兼职,充分利用你的零碎时间!

2024年已然匆匆走过了三分之一&#xff0c;许多人或许都感受到了这一年大环境带来的压力。然而&#xff0c;对我而言&#xff0c;每个月的副业收入尚算可观&#xff0c;稳定在3000元以上&#xff0c;这让我深感庆幸&#xff0c;因为我找到了那份适合自己的副业。 打工的日子&a…

【40分钟速成智能风控1】互联网金融风险管理简介

目录 瓦联网金融的发展和现状 风险管理类型划分 欺诈风险 第一方和第三方 账户级和交易级 个人和团伙 互联网金融是传统金融业务与新兴互联网技术结合的一个交叉领域&#xff0c;例如互联网公司开展的金融业务&#xff0c;或者金融机构的线上化服务&#xff0c;都属于互联…

python 如何生成uuid

UUID&#xff08;Universally Unique Identifier&#xff09;是通用唯一识别码&#xff0c;在许多领域用作标识&#xff0c;比如我们常用的数据库也可以用它来作为主键&#xff0c;原理上它是可以对任何东西进行唯一的编码的。作为新手一看到类似varchar(40)这样的主键就觉得有…

从零到一:如何使用亮数据代理快速收集训练数据打造自己的AIGC大模型

这里写自定义目录标题 前言项目内容项目进展 1、本章节事项1.1、确定2个分类1.2、寻找来源网站1.2.1、京东搜索1.2.2、淘宝搜索1.2.3、唯品会搜索 1.3、编写代码&#xff0c;收集数据&#xff0c;并按照分类存放图片1.3.1、在Java项目里加载SeleniumChromeDriverJsoup的jar包1.…