【数据预测】基于蜣螂优化算法DBO的VMD-KELM光伏发电功率预测 短期功率预测【Matlab代码#53】

文章目录

    • 【可更换其他算法,`获取资源`请见文章第6节:资源获取】
    • 1. 蜣螂优化算法DBO
    • 2. 变分模态分解VMD
    • 3. 核极限学习机KELM
    • 4. 部分代码展示
    • 5. 仿真结果展示
    • 6. 资源获取


【可更换其他算法,获取资源请见文章第6节:资源获取】


1. 蜣螂优化算法DBO

蜣螂优化算法可参考DBO介绍

2. 变分模态分解VMD

变分模态分解(Variational Mode Decomposition,简称VMD)是一种信号分解和降噪方法,用于从复杂的信号中提取出不同的成分或模态。

VMD是在2014年由Konstantin Dragomiretskiy和Dominique Zosso提出的。它基于变分原理,通过最小化信号的复杂度和不同成分之间的相互影响,将信号分解成多个固有模态(Intrinsic Mode Functions,简称IMFs)。IMFs是具有不同频率和振幅的函数,相当于将原始信号分解成一系列振动模态。

VMD适用于处理非线性和非平稳信号,例如振动信号、生物信号、地震信号、图像信号等。它在信号处理、振动分析、图像处理等领域有广泛的应用,特别是在提取信号中的隐含信息和去除噪声方面表现出色。

各个功率模态分量 u k u_{k} uk的频谱通过希尔伯特转换被传送至基带,并将其与一个指标对应的估计中心频率 w k w_{k} wk相对应,最终通过解调信号高斯平滑度来估算该带宽,从而将该约束的变分问题表达为:
在这里插入图片描述
式中, u k u_{k} uk代表第 k k k个功率模态分量; w k w_{k} wk代表功率模态分量的中心频率; δ ( t ) \delta (t) δ(t)代表单位冲击函数。同时,采用二次惩罚算子及拉格朗日乘子达到排除以上因素的限制的目的,将上面式子的最小化问题转变为下面式子的无约束优化问题。
在这里插入图片描述
式中, α \alpha α代表惩罚算子,在时间序列信号中混有噪声可保证其重构后的精度; λ \lambda λ代表拉格朗日的乘子; ⊗ \otimes 表示卷积算子。

随后更新功率模态分量 u k u_{k} uk,即:
在这里插入图片描述
式中, i i i n n n都是代表不同参数取得的任意值; ω \omega ω表示信号从时间域向 t t t频率域变换的符号; u ^ \hat{u} u^ f ^ ( ω ) \hat{f} (\omega ) f^(ω) λ ^ ( ω ) \hat{\lambda} (\omega) λ^(ω)是傅里叶变换后的 u {u} u f ( ω ) {f} (\omega ) f(ω) λ ( ω ) {\lambda} (\omega ) λ(ω)

最终,以上面式子同样的方式更新 ω k n + 1 \omega_{k}^{n+1} ωkn+1 λ k n + 1 \lambda_{k}^{n+1} λkn+1即可。

当满足特定的判别精度 δ \delta δ后,终止循环迭代。
在这里插入图片描述
式中, ε \varepsilon ε表示收敛进度。最终,将原功率序列分解为 k k k个窄频段IMF。

3. 核极限学习机KELM

KELM模型是在 ELM 的基础上延伸建立的,ELM 模型中的随机映射被替换成了核映射,通过把低维问题转换到完整的内积空间里解决,可以极大地减少网络的复杂性,与 ELM 相比具备更强的学习泛化能力和稳定性。

ELM算法采用随机生成各个神经元连接权值和阈值,这会导致算法的波动和不稳定,所以在ELM 算法中当映射函数 h ( x ) h(x) h(x)为未知时,引入了核函数,KELM 的数学描述如下:
在这里插入图片描述
式中, H H H表示隐含层输出矩阵; K ( x i , x j ) K(x_{i},x_{j}) K(xi,xj)表示核函数,本文采用RBF核函数,即:
在这里插入图片描述
式中, g g g为核参数。可以得到KELM的输出函数表达式为:
在这里插入图片描述
式中, β \beta β为输出权值矩阵; T T T为目标输出矩阵; I I I为单位矩阵; C C C为正则化系数。

综上,KELM的核参数 g g g和正则化系数 C C C是影响预测性能的重要因素,这也正是本文所使用的优化算法需要优化的两个参数。

4. 部分代码展示

%%  蜣螂算法参数设置
% 优化参数的个数dim为2 。
%  目标函数
fun = @getObjValue; 

dim = 2;
% 优化参数的取值上下限(正则化系数C 核函数参数矩阵g )
lb = [25 2];
ub = [60 5];

%%  参数设置
pop =20; %种群数量
Max_iteration=100;%最大迭代次数             
%% 优化(调用函数)
[Best_pos,Best_score,Convergence_curve]=DBO(pop,Max_iteration,lb,ub,dim,fun);

x=Best_pos  ;                %最优个体 
C = x(1);                    %正则化系数
Kernel_type = 'RBF';         %核函数名
Kernel_para = x(2);          %核函数参数矩阵
output_train=shuchu(nn(1:geshu),:);
output_test=shuchu(nn((geshu+1):end),:);

figure
plot(output_train )
hold on
plot(train_simu1  )
legend('真实值','预测值')
title('训练集')

figure
plot(output_test )
hold on
plot(test_simu1 )
legend('真实值','预测值')
title('测试集')

figure
plot(Convergence_curve)
title('适应度曲线')
xlabel('迭代次数')
ylabel('适应度')
%%
reay = output_train;   % 真实数据
prey = train_simu1 ;   % 仿真数据
reay = reshape(reay,1,size(reay,1)*size(reay,2));   % 真实数据
prey = reshape(prey,1,size(prey,1)*size(prey,2));   % 仿真数据
num=length(reay);%统计样本总数
error=prey-reay;  %计算误差
mae=sum(abs(error))/num; %计算平均绝对误差
me=sum((error))/num; %计算平均绝对误差
mse=sum(error.*error)/num;  %计算均方误差
rmse=sqrt(mse);     %计算均方误差根
r=min(min(corrcoef(prey,reay)));
R2=r*r;

5. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6. 资源获取

可以获取完整代码资源,可更换其他群智能算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/52397.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vulnhub: hacksudo: search靶机

kali:192.168.111.111 靶机:192.168.111.170 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.170 80端口目录爆破 feroxbuster -k -d 1 --url http://192.168.111.170 -w /opt/zidian/SecLists-2022.2/Discovery/Web…

机器学习之Boosting和AdaBoost

1 Boosting和AdaBoost介绍 1.1 集成学习 集成学习 (Ensemble Learning) 算法的基本思想就是将多个分类器组合,从而实现一个预测效果更好的集成分类器。 集成学习通过建立几个模型来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学…

ChatGPT长文本对话输入方法

ChatGPT PROMPTs Splitter 是一个开源工具,旨在帮助你将大量上下文数据分成更小的块发送到 ChatGPT 的提示,并根据如何处理所有块接收到 ChatGPT(或其他具有字符限制的语言模型)的方法。 推荐:用 NSDT设计器 快速搭建可…

iOS开发-NotificationServiceExtension实现实时音视频呼叫通知响铃与震动

iOS开发-NotificationServiceExtension实现实时音视频呼叫通知响铃与震动 在之前的开发中,遇到了实时音视频呼叫通知,当App未打开或者App在后台时候,需要通知到用户,用户点击通知栏后是否接入实时音视频的视频或者音频通话。 在…

【雕爷学编程】MicroPython动手做(17)——掌控板之触摸引脚

知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…

ChatGLM-6B 部署与 P-Tuning 微调实战-使用Pycharm实战

国产大模型ChatGLM-6B微调部署入门-使用Pycharm实战 1.ChatGLM模型介绍 ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本…

【指针二:穿越编程边界的超能力】

本章重点 5. 函数指针 6. 函数指针数组 7. 指向函数指针数组的指针 8. 回调函数 五、函数指针 首先看一段代码: 输出的是两个地址相同,这两个相同的地址都是 test 函数的地址。 那我们的函数的地址要想保存起来,怎么保存? 下面我…

Install the Chinese input method on Linux

Open terminal and input: sudo -i apt install fcitx fcitx-googlepinyinWait for it to finish. Search fcitx: "设置"-->"输入法": Finally, we get the following result: Ctrl Space:Switch the input method. The test …

HbuilderX运行时遇见文件找不到问题

错误类型 解决方法 找到报错的文件 系统提示crypto-js 和 sm-crypto 找不到,然后注释掉找不到的文件 运行成功!!!

【OpenCV • c++】图像几何变换 | 图像坐标映射

🚀 个人简介:CSDN「博客新星」TOP 10 , C/C 领域新星创作者💟 作 者:锡兰_CC ❣️📝 专 栏:【OpenCV • c】计算机视觉🌈 若有帮助,还请关注➕点赞➕收藏&#xff…

今天学学消息队列RocketMQ:消息类型

RocketMQ支持的消息类型有三种:普通消息、顺序消息、延时消息、事务消息。以下内容的代码部分都是基于rocketmq-spring-boot-starter做的。 普通消息 普通消息是一种无序消息,消息分布在各个MessageQueue当中,以保证效率为第一使命。这种消息…

AI绘画Stable Diffusion原理之Autoencoder-Latent

前言 传送门: stable diffusion:Git|论文 stable-diffusion-webui:Git Google Colab Notebook:Git kaggle Notebook:Git 今年AIGC实在是太火了,让人大呼许多职业即将消失,比如既能帮…

【Vscode | R | Win】R Markdown转html记录-Win

Rmd文件转html R语言环境Vscode扩展安装及配置配置radian R依赖包pandoc安装配置pandoc环境变量验证是否有效转rmd为html 注意本文代码块均为R语言代码,在R语言环境下执行即可 R语言环境 官网中去下载R语言安装包以及R-tool 可自行搜寻教程 无需下载Rstudio Vscod…

Linux:ELK:日志分析系统(使用elasticsearch集群)

原理 1. 将日志进行集中化管理(beats) 2. 将日志格式化(logstash) 将其安装在那个上面就对那个进行监控 3. 对格式化后的数据进行索引和存储(elasticsearch) 4. 前端数据的展示(kibana&…

python多进程编程(模式与锁)

multiprocessing的三种模式 fork,【拷贝几乎所有资源】【支持文件对象/线程锁等传参】【unix】【任意位置开始】【快】spawn,【run参数传参必备资源】【不支持文件对象/线程锁等传参】【unix、win】【main代码块开始】【慢】forkserver,【ru…

C++ 类和对象

面向过程/面向对象 C语言是面向过程,关注过程,分析出求解问题的步骤,通过函数调用逐步解决问题 C是基于面对对象的,关注的是对象——将一件事拆分成不同的对象,依靠对象之间的交互完成 引入 C语言中结构体只能定义…

41. linux通过yum安装postgresql

文章目录 1.下载安装包2.关闭内置PostgreSQL模块:3.安装postgresql服务:4.初始化postgresql数据库:5.设置开机自启动:6.启动postgresql数据库7.查看postgresql进程8.通过netstat命令或者lsof 监听默认端口54329.使用find命令查找了一下postgresql.conf的配置位置10.修改postgre…

ARM将常数加载到寄存器方法之LDR伪指令

一、是什么? LDR Rd,const伪指令可在单个指令中构造任何32位数字常数,使用伪指令可以生成超过MOV和MVN指令 允许范围的常数. 实现原理: (1)如果可以用MOV或MVN指令构造该常数,则汇编程序会生成适当的指令 (2)如果不能用MOV或MVN指令构造该常数,则汇编程序会执行下列…

QEMU源码全解析19 —— QOM介绍(8)

接前一篇文章:QEMU源码全解析18 —— QOM介绍(7) 本文内容参考: 《趣谈Linux操作系统》 —— 刘超,极客时间 《QEMU/KVM》源码解析与应用 —— 李强,机械工业出版社 特此致谢! 上一回讲到了Q…

用C语言实现堆排序算法

1.设计思路 排序的思想将一个数组按递增的顺序进行排序,将数组的第一个位置空下(下标为0),因为会导致子节点和本身同一个结点(i和2i一致),每次堆排序在下标1的位置放上了最大值,然后…