FJSP:巨型犰狳优化算法(Giant Armadillo Optimization,GAO)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

一、柔性作业车间调度问题

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工序的处理时间可能不同。

FJSP问题的目标是找到一个最优的作业调度方案,使得所有作业的完成时间最小化。这个问题的难点在于需要考虑到多个作业、多个机器和多个工序之间的复杂关系,并且需要在有限的时间内找到最优解。

解决FJSP问题的方法包括启发式算法、精确算法和元启发式算法等。启发式算法通过一系列规则和策略来生成调度方案,常见的方法有遗传算法、模拟退火算法和禁忌搜索算法等。精确算法则通过穷举搜索或者动态规划等方法来找到最优解,但在实际应用中可能面临计算复杂度过高的问题。元启发式算法则结合了多种启发式算法和精确算法的优点,通过组合不同的方法来求解FJSP问题。
FJSP问题的难点主要体现在以下几个方面:

  1. 组合爆炸:FJSP问题中,每个工件都有多个工序需要完成,而每个工序都有多个可选的机器可以执行。这导致了组爆炸的问题,可能的调度方案数量非常庞,难以穷举所有可能性。

  2. 优化目标多样:FJSP问题通常有多个优化目标,如最小化总加权完成时间、最小化总延迟时间等。这些目标之间可能存在冲突,使找到一个全局最优解变得困难。

  3. 资源约束:FJSP问题中,每个机器在同一时间只能执行一个工序,且每个工序需要一定的时间和资源。这些资源约束增加了问题的复杂性,需要在满足约束条件的前提下进行调度。

  4. 实时性要求:在实际生产中,FJSP问题通常需要考虑实时性要求,即要求在有限的时间内生成一个可行的调度方案。这增加了问题的难度,需要在有限时间内找到一个较优的解。

柔性作业车间调度问题( FJSP) 的描述如下:n个工件 { J , J 2 , . . , J n } \{J,J_2,..,J_n\} {J,J2,..,Jn}要在 m m m 台机器 { M 1 , M 2 , . . , M m } \{M_1,M_2,..,M_m\} {M1,M2,..,Mm} 上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。因此,柔性作业车间调度问题包含两个子问题:确定各工件的加工机器 (机器选择子问题) 和确定各个机器上的加工先后顺序 (工序排序子问题)。

此外,在加工过程中还需要满足下面的约束条件:
(1) 同一台机器同一时刻只能加工一个工件;
(2) 同一工件的同一道工序在同一时刻只能被一台机器加工;
(3) 每个工件的每道工序一旦开始加工不能中断;
(4) 不同工件之间具有相同的优先级;
(5)不同工件的工序之间没有先后约束,同一工件的工序之间有先后约束;
(6)所有工件在零时刻都可以被加工。

1.1符号描述

n : n: n:工件总数;
m : m: m: 机器总数;
i , e : i,e: i,e: 机器序号, i , e = 1 , 2 , 3 , . . . , m i,e=1,2,3,...,m i,e=1,2,3,...,m ;
j , k : j,k: j,k: 工件序号, j , k = 1 , 2 , 3 , . . . , n ; j,k=1,2,3,...,n; j,k=1,2,3,...,n; h j : h_j: hj:工件 j j j 的工序总数;
h , l : h,l: h,l: 工序序号, h = 1 , 2 , 3 , . . . , h j h=1,2,3,...,h_j h=1,2,3,...,hj ;
Ω j h : \Omega_{jh}: Ωjh:工件 j j j 的第 h h h 道工序的可选加工机器集;
m j h : m_{jh}: mjh:工件 j j j 的第 h h h 道工序的可选加工机器数;
O j h : O_{jh}: Ojh:工件 j j j 的第 h h h道工序;
M i j h : M_{ijh}: Mijh:工件 j j j 的第 h h h道工序在机器 i i i 上加工;
p i j h : p_{ijh}: pijh:工件 j j j的第 h h h道工序在机器 i i i上的加工时间;
s j h : s_{jh}: sjh:工件 j j j 的第 h h h 道工序加工开始时间;
c j h : c_{jh}: cjh:工件 j j j的第 h h h道工序加工完成时间;
d j : d_j: dj:工件 j j j 的交货期;
L L L: 一个足够大的正数;
C j C_j Cj: 每个工件的完成时间;
C max ⁡ : C_{\max}: Cmax: 最大完工时间;
T o : T o = ∑ j = 1 n h j T_o:\quad T_o=\sum_{j=1}^nh_j To:To=j=1nhj, 所有工件工序总数;
x i j h = { 1 , 如果工序 O j h 选择机器 i ; 0 , 否则; x_{ijh}=\begin{cases}1,\text{如果工序}O_{jh}\text{选择机器}i;\\0,\text{否则;}\end{cases} xijh={1,如果工序Ojh选择机器i;0,否则;
y i j h k l = { 1 , 如果 O i j h 先于 O i k l 加工 ; 0 , 否则 ; y_{ijhkl}=\begin{cases}1,\text{如果}O_{ijh}\text{先于}O_{ikl}\text{加工};\\0,\text{否则};\end{cases} yijhkl={1,如果Oijh先于Oikl加工;0,否则;

1.2约束条件

C 1 : s j h + x i j h × p i j h ≤ c j h C_{1}:s_{jh}+x_{ijh}\times p_{ijh}\leq c_{jh} C1:sjh+xijh×pijhcjh

其中: i = 1 , … , m ; j = 1 , … , n ; i=1,\ldots,m;j=1,\ldots,n; i=1,,m;j=1,,n; h = 1 , … , h j h=1,\ldots,h_j h=1,,hj
C 2 : c j h ≤ s j ( h + 1 ) C_{2}:c_{jh}\leq s_{j(h+1)} C2:cjhsj(h+1)
其中 : j = 1 , … , n ; h = 1 , . . . , h j − 1 :j=1,\ldots,n;h=1,...,h_j-1 :j=1,,n;h=1,...,hj1
C 3 : c j h j ≤ C max ⁡ C_{3}:c_{jh_j}\leq C_{\max} C3:cjhjCmax
其中: j = 1 , . . . , n j=1,...,n j=1,...,n
C 4 : s j h + p i j h ≤ s k l + L ( 1 − y i j h k l ) C_{4}:s_{jh}+p_{ijh}\leq s_{kl}+L(1-y_{ijhkl}) C4:sjh+pijhskl+L(1yijhkl)

其中 : j = 0 , … , n ; k = 1 , … , n ; h = 1 , … , h j ; l = 1 , … , h k ; i = 1 , … , m :j=0,\ldots,n;k=1,\ldots,n;h=1,\ldots,h_j;l=1,\ldots,h_k;i=1,\ldots,m :j=0,,n;k=1,,n;h=1,,hj;l=1,,hk;i=1,,m
C 5 : c j h ≤ s j ( h + 1 ) + L ( 1 − y i k l j ( h + 1 ) ) C_{5}:c_{jh}\leq s_{j(h+1)}+L(1-y_{iklj(h+1)}) C5:cjhsj(h+1)+L(1yiklj(h+1))

其中 : j = 1 , … , n ; k = 0 , … , n ; h = 1 , … , h j − 1 ; l = 1 , … , h k ; i = 1 , … , m :j=1,\ldots,n;k=0,\ldots,n;h=1,\ldots,h_j-1;\quad l=1,\ldots,h_k;\quad i=1,\ldots,m :j=1,,n;k=0,,n;h=1,,hj1;l=1,,hk;i=1,,m
h 1 : ∑ i = 1 m j h x i j h = 1 h_{1}:\sum_{i=1}^{m_{jh}}x_{ijh}=1 h1:i=1mjhxijh=1
其中: h = 1 , . . . , h j ; j = 1 , . . . , n ; h=1,...,h_j;j=1,...,n; h=1,...,hj;j=1,...,n;

h 2 : ∑ j = 1 n ∑ h = 1 h j y i j h k l = x i k l h_{2}:\sum_{j=1}^n\sum_{h=1}^{h_j}y_{ijhkl}=x_{ikl} h2:j=1nh=1hjyijhkl=xikl

其中: i = 1 , … , m ; k = 1 , … , n ; l = 1 , … , h k i=1,\ldots,m;k=1,\ldots,n;l=1,\ldots,h_k i=1,,m;k=1,,n;l=1,,hk
h 3 : ∑ i = 1 n ∑ i = 1 n k y i j h k l = x i j h h_{3}:\sum_{i=1}^n\sum_{i=1}^{n_k}y_{ijhkl}=x_{ijh} h3:i=1ni=1nkyijhkl=xijh

其中: i = 1 , … , m ; j = 1 , … , n ; h = 1 , … , h k i=1,\ldots,m;j=1,\ldots,n;\quad h=1,\ldots,h_k i=1,,m;j=1,,n;h=1,,hk
C 6 : s j h ≥ 0 , c j h ≥ 0 C_{6}:s_{jh}\geq0,c_{jh}\geq0 C6:sjh0,cjh0

其中 : j = 0 , 1 , . . . , n ; h = 1 , . . . , h j :j=0,1,...,n;h=1,...,h_j :j=0,1,...,n;h=1,...,hj

C 1 C_{1} C1 C 2 C_{2} C2表示每一个工件的工序先后顺序约束 ;
C 3 C_{3} C3表示工件的完工时间的约束,即每一个工件的完工时间不可能超过总的完工时间 ;
C 4 C_{4} C4 C 5 C_{5} C5表示同一时刻同一台机器只能加工一道工序 ;
h 1 h_{1} h1表示机器约束,即同一时刻同一道工序只能且仅能被一台机器加工;
h 2 h_{2} h2 h 3 h_{3} h3表示存在每一台机器上可以存在循环操作 ;
C 6 C_{6} C6表示各个参数变量必须是正数。

1.3目标函数

FJSP的目标函数是最大完工时间最小。完工时间是每个工件最后一道工序完成的时间,其中最大的那个时间就是最大完工时间(makespan)。它是衡量调度方案的最根本指标, 主要体现车间的生产效率,如下式所示:

f = min ⁡ ( max ⁡ l ≤ j ≤ n ( C j ) ) f=\min(\max_{\mathrm{l\leq}j\leq n}(C_j)) f=min(maxljn(Cj))

参考文献:
[1]张国辉.柔性作业车间调度方法研究[D].华中科技大学,2009.

二、算法简介

巨型犰狳优化算法(Giant Armadillo Optimization,GAO)由Omar Alsayyed等人于2023年提出,该算法模仿了巨型犰狳在野外的自然行为。GAO设计的基本灵感来自巨型犰狳向猎物位置移动和挖掘白蚁丘的狩猎策略。GAO理论在两个阶段进行表达和数学建模:(i)基于模拟巨型犰狳向白蚁丘的运动的探索,以及(ii)基于模拟巨型犰狳的挖掘技能以捕食和撕裂白蚁丘的开发。https://blog.csdn.net/weixin_46204734/article/details/136605693

参考文献:

[1]Alsayyed O, Hamadneh T, Al-Tarawneh H, Alqudah M, Gochhait S, Leonova I, Malik OP, Dehghani M. Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023; 8(8):619. Biomimetics | Free Full-Text | Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems

三、算法求解FJSP

3.1部分代码

dim=2*sum(operaNumVec);
LB = -jobNum * ones(1, dim);
UB = jobNum * ones(1, dim);
Max_iteration = 100;
SearchAgents_no = 100;
fobj=@(x)fitness(x, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 优化算法求解FJSP
[fMin , bestX, Convergence_curve ] = GAO(SearchAgents_no,Max_iteration,LB,UB,dim,fobj);
machineTable=GetMachineTable(bestX, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 画收敛曲线图
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('迭代次数')
ylabel('最大完工时间')
legend('GAO')
saveas(gca,'1.jpg');

3.2部分结果

在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/522479.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大米自动化生产线设备:现代粮食加工的核心力量

随着科技的不断进步和粮食加工行业的快速发展,大米自动化生产线设备在现代粮食加工中的地位愈发重要。这些设备不仅大大提高了生产效率,还保证了产品的质量和安全,成为了现代粮食加工行业不可或缺的核心力量。 一、自动化生产线设备助力效率提…

达托机器人(DRB)平台的安全性和前景是否可靠?

在当今数字化时代,技术创新不仅是企业成功的关键,也是整个行业的驱动力。在这个背景下,达托机器人(DRB)脱颖而出,以其创世团队的坚实基础和平台的可靠前景,引起了业界的广泛关注。 首先&#xf…

消息队列MQ(面试题:为什么使用MQ)

一、什么是mq? MQ全称 Message Queue(消息队列),是在消息的传输过程中保存消息的容器。多用于分布式系统之间进行通信,解耦。 二、常见的mq产品 RabbitMQ、RocketMQ、ActiveMQ、Kafka、ZeroMQ、MetaMq RabbitMQ: One broker …

人工智能、深度伪造和数字身份:企业网络安全的新前沿

深度伪造(Deepfakes)的出现打响了网络安全军备竞赛的发令枪。对其影响的偏执已经波及到一系列领域,包括政治错误信息、假新闻和社交媒体操纵。 深度伪造将加剧公共领域对信任和沟通的本已严峻的压力。这将理所当然地引起监管机构和政策制定者…

java.lang.NoClassDefFoundError: javax/validation/constraints/Min

1、报错截图 2、解决办法 添加依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId> </dependency>

浮点数在内存中的存储【详解】

浮点数在内存中的存储 浮点数存储规则小数点后数值的二进制转换float和double存储图示优化存储方案E不全为0或不全为1E全为0E全为1 浮点数存储规则 大家都知道整型数据是以补码的方式存放在内存中。以下几个概念是需要知道的&#xff1a; 原码&#xff0c;补码&#xff0c;反…

C++入门语法(命名空间缺省函数函数重载引用内联函数nullptr)

目录 前言 1. 什么是C 2. C关键字 3. 命名空间 3.1 命名空间的定义 3.2 命名空间的使用 4. C输入和输出 5. 缺省函数 5.1 概念 5.2 缺省参数分类 6. 函数重载 6.1 概念 6.2 为何C支持函数重载 7. 引用 7.1 概念 7.2 特性 7.3 常引用 7.4 引用与指针的区别 7…

docker-compose安装dozzle

dozzle是一个docker日志的webui工具 安装配置 docker-compose.yaml version: "3" services:dozzle:container_name: dozzleimage: amir20/dozzle:v4.11.4volumes:- /var/run/docker.sock:/var/run/docker.sockrestart: unless-stoppedports:- 20342:8080networks:cu…

人工智能 - 服务于谁?

人工智能服务于谁&#xff1f; 人工智能服务于生存&#xff0c;其最终就是服务于战争&#xff08;热战、技术战、经济战&#xff09; 反正就是为了活着而战的决策。 既然人工智能所有结果&#xff0c;来自大数据的分挖掘&#xff08;分析&#xff09;也就是数据的应用&#x…

施耐德中高端PLC仿真器

参考文档&#xff1a;《Unity Pro PLC 仿真器》EIO0000001719.06 &#xff08;Control Expert 就是 Unity Pro 最新版本换了个名字&#xff0c;两者操作基本相同&#xff09; https://www.schneider-electric.cn/zh/download/document/EIO0000001719/ 1. 适用 PLC 这里使用的…

idea常用配置

IDEA设置全局配置 参考&#xff1a;IDEA设置全局配置_idea如何打开一个项目,全局设置-CSDN博客 idea提交代码到git或svn上时&#xff0c;怎么忽略.class、.iml文件和文件夹等不必要的文件 参考&#xff1a;idea提交代码到git或svn上时&#xff0c;怎么忽略.class、.iml文件和文…

【Frida】【Android】 工具篇:查壳工具大赏

&#x1f6eb; 系列文章导航 【Frida】【Android】01_手把手教你环境搭建 https://blog.csdn.net/kinghzking/article/details/136986950【Frida】【Android】02_JAVA层HOOK https://blog.csdn.net/kinghzking/article/details/137008446【Frida】【Android】03_RPC https://bl…

MIT6.828 Lab1 Xv6 and Unix utilities

2023MIT6.828 lab-1 官方地址 一、sleep 实验内容 调用sleep&#xff08;系统调用&#xff09;编写用户级别程序能暂停特定时常的系统滴答程序保存在user/sleep.c 实验过程 xv6的参数传递 查看官方文档提示的文件中&#xff0c;多采用如下定义&#xff1a; int main(in…

window安装maven和hadoop3.1.4

前面的文章已讲解如何安装idea和进行基本设置&#xff0c;本文主要带着大家安装配置好maven和hadoop. 大家不用去官网下载&#xff0c;直接使用我发给大家的压缩文件&#xff0c;注意解压后的文件夹不要放在中文目录下&#xff0c;课堂上我们讲解过原因。 这是我电脑上的路径&a…

#QT项目实战(天气预报)

1.IDE&#xff1a;QTCreator 2.实验&#xff1a; 3.记录&#xff1a; &#xff08;1&#xff09;调用API的Url a.调用API获取IP whois.pconline.com.cn/ipJson.jsp?iphttp://whois.pconline.com.cn/ipJson.jsp?ip if(window.IPCallBack) {IPCallBack({"ip":&quo…

Java 外观模式

外观模式隐藏了系统的复杂性。 它为客户端提供了一个简单的接口&#xff0c;客户端使用接口与系统交互。 外观模式是结构型模式。 例子 class ShapeFacade {interface Shape {void draw();}class Rectangle implements Shape {Overridepublic void draw() {System.out.prin…

Win主机拷贝文件到Ubuntu虚拟机

之前在虚拟机Ubuntu16.04版本拷贝文件没有遇到问题&#xff0c;今天新装了Ubuntu20.04无法直接拖拽或者拷贝粘贴。 1安装open-vm-tools sudo apt-get autoremove open-vm-tools sudo apt-get install open-vm-tools-desktop sudo reboot2禁用Wayland sudo gedit /etc/gdm3/…

大创项目推荐 深度学习 YOLO 实现车牌识别算法

文章目录 0 前言1 课题介绍2 算法简介2.1网络架构 3 数据准备4 模型训练5 实现效果5.1 图片识别效果5.2视频识别效果 6 部分关键代码7 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于yolov5的深度学习车牌识别系统实现 该项目较…

正确使用@Resource

目录 1 怎么使用Resource&#xff1f;1.0 实验环境1.1 通过字段注入依赖1.2 bean property setter methods &#xff08;setter方法&#xff09; 2 打破岁月静好&#xff08;Resource takes a name attribute&#xff09;2.1 结论2.2 那我不指定呢&#xff1f;【结论&#xff1…

自己买域名还是通过域名中介购买域名比较好?

选择直接购买域名还是通过域名中介购买&#xff0c;主要取决于你的具体需求、预算和所面临的风险。下面是一些考虑因素&#xff0c;帮助你做出决定&#xff1a; 直接购买域名的优势&#xff1a; 1.成本较低&#xff1a;如果域名未被注册&#xff0c;直接在域名注册商处注册…