人工智能数据分析Python常用库 04 matplotlib库

文章目录

  • 一、matplotlib库的作用与环境配置
    • 1、环境配置示例
    • 2、改变绘图风格
    • 3、保存图片
  • 二、绘制二维图形
    • 1、折线图
      • (1)示例
      • (2)调整线条颜色:
      • (3)调整线条风格
      • (4)调整线宽
      • (5)调整数据点标记
      • (6)颜色和风格设置的简写
      • (7)调整坐标轴
      • (8)设置图形标签
      • (9)设置图例
      • (10)添加文字和箭头
    • 2、散点图
      • (1)示例
      • (2)颜色设置
      • (3)根据数据控制点的大小
      • (4)透明度
    • 3、柱形图
      • (1)简单柱形图
      • (2)累加柱形图
      • (3)并列柱形图
      • (4)横向柱形图
    • 4、多子图
      • (1)简单多子图
      • (2)多行多列子图
      • (3)不规则多子图
    • 5、直方图
      • (1)普通频次直方图
      • (2)概率密度
      • (3)累计概率分布
      • (4)例:模拟两个骰子
    • 6、误差图
      • (1)基本误差图
      • (2)柱形图误差图
  • 三、面相对象的风格简介
    • 1、普通图
    • 2、画中画
    • 3、多子图
  • 四、三维图形简介
    • 1、三维数据点与线
    • 2、三维数据曲面图

一、matplotlib库的作用与环境配置

matplotlib库是数据分析中,数据可视化的一个重要工具。

1、环境配置示例

import matplotlib.pyplot as plt

x = [1,2,3,4]
y = [1,4,9,16]

plt.plot(x,y)   # 绘制折线图
plt.ylabel("squares")   # 设置y轴标签
plt.show()  # 显示图片

2、改变绘图风格

print(plt.style.available[:])   # 显示可用的绘图风格

with plt.style.context("seaborn-white"):    # 临时改变绘图风格
    plt.show()
import matplotlib.pyplot as plt
plt.style.use("seaborn-white")  # 永久改变绘图风格

x = [1,2,3,4]
y = [1,4,9,16]

plt.plot(x,y)   # 绘制折线图
plt.ylabel("squares")   # 设置y轴标签
plt.show()  # 显示图片

3、保存图片

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,10,100)
plt.plot(x,np.exp(x))

plt.savefig("myfigure.png") # 保存图片

二、绘制二维图形

1、折线图

(1)示例

import matplotlib.pyplot as plt
import numpy as np
plt.style.use("seaborn-white")

x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x))   # 绘制正弦曲线
plt.plot(x,np.cos(x))   # 绘制余弦曲线

plt.show()

在这里插入图片描述

(2)调整线条颜色:

import matplotlib.pyplot as plt
import numpy as np
plt.style.use("seaborn-white")

x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x))   # 绘制正弦曲线

offsets = np.linspace(0,np.pi,5)
colors = ["blue","g","r","yellow","pink"]

for offset,color in zip(offsets,colors):
    plt.plot(x,np.sin(x-offset),color=color) # 关键字color可缩写为c

plt.show()

在这里插入图片描述

(3)调整线条风格

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,10,11)
offsets = list(range(8))
linestyles = ["solid","dashed","dashdot","dotted","-","--","-.",":"]
for offset,linestyle in zip(offsets,linestyles):
    plt.plot(x,x+offset,linestyle=linestyle)    # linestyle可缩写为ls

plt.show()

在这里插入图片描述

(4)调整线宽

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,10,11)
offsets = range(0,12,3)
linewidths = (i*2 for i in range(1,5))
for offset,linewidth in zip(offsets,linewidths):
    plt.plot(x,x+offset,linewidth=linewidth)    # linewidth可缩写为lw

plt.show()

在这里插入图片描述

(5)调整数据点标记

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,10,11)
offsets = range(0,12,3)
markers = ["*","+","o","s"]
for offset,marker in zip(offsets,markers):
    plt.plot(x,x+offset,marker=marker,markersize=10)    # markersize可缩写为ms

plt.show()

在这里插入图片描述

(6)颜色和风格设置的简写

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,10,11)
offsets = range(0,8,2)
color_linestyles = ["g-","c--","k-.","r:"]
for offset,color_linestyle in zip(offsets,color_linestyles):
    plt.plot(x,x+offset,color_linestyle)

plt.show()

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,10,11)
offsets = range(0,8,2)
cmls = ["g*-","b+--","ko-.","rs:"]
for offset,cml in zip(offsets,cmls):
    plt.plot(x,x+offset,cml)

plt.show()

在这里插入图片描述
其他用法及颜色缩写、数据点标记缩写等,请查看官方文档,如下:
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

(7)调整坐标轴

x轴、y轴的边界

x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x))
plt.xlim(-1,7)
plt.ylim(-1.5,1.5)
plt.show()
x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x))
plt.axis([-2,8,-2,2])   #设置x轴的边界为-2到8,y轴为-2到2
plt.show()
x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x))
plt.axis("tight")  
plt.show()
x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x))
plt.axis("equal")
plt.show()

help(plt.axis) 可以查询 plt.axis() 中还可以设置哪些字符串参数。

对数坐标

import matplotlib.pyplot as plt
import numpy as np
import math
x = np.logspace(0,5,6)  #10**0到10**5的等比数列,取6个数


plt.plot(x,np.log(x),marker="o") # np.log(x)表示以e为底,求x的对数
plt.xscale("log")   # 表示x轴的刻度设置为对数刻度
plt.show()

在这里插入图片描述
调整坐标轴刻度

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,10,100)
plt.plot(x,x**2)
plt.xticks(np.arange(0,12,step=1),fontsize=15)
plt.yticks(np.arange(0,100,step=10))

plt.show()

在这里插入图片描述
调整刻度样式

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,10,100)
plt.plot(x,x**2)
plt.tick_params(axis="both",labelsize=15)

plt.show()

在这里插入图片描述

(8)设置图形标签

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x))
plt.title("A Sine Curve",fontsize=20)
plt.xlabel("x",fontsize=15)
plt.ylabel("sin(x)",fontsize=15)

plt.show()

在这里插入图片描述

(9)设置图例

默认:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x),"b-",label="Sin")
plt.plot(x,np.cos(x),"r--",label="Cos")
plt.legend()
plt.show()

在这里插入图片描述
修饰图例:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x),"b-",label="Sin")
plt.plot(x,np.cos(x),"r--",label="Cos")
plt.legend(loc="upper center",frameon=False,fontsize=15)
#loc supported values are 'best', 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center'
plt.ylim(-1.5,2)
plt.show()

在这里插入图片描述

(10)添加文字和箭头

添加文字

x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x),"b-")
plt.text(3.5,0.5,"y=sin(x)",fontsize=15) # 3.5,0.5为文字所在坐标
plt.show()

在这里插入图片描述
添加箭头

x = np.linspace(0,2*np.pi,100)
plt.plot(x,np.sin(x),"b-")
plt.annotate("local min",xy=(1.5*np.pi,-1),xytext=(4.5,0),arrowprops=dict(facecolor="black",shrink=0.1))
# xy=(1.5*np.pi,-1) 指定了箭头指向的点的坐标。xytext=(4.5,0) 指定了注释文本的位置。arrowprops=dict(facecolor="black",shrink=0.1) 则设置了箭头的样式,包括颜色和箭头的缩放。
plt.show()

在这里插入图片描述

2、散点图

(1)示例

x = np.linspace(0,2*np.pi,20)
plt.scatter(x,np.sin(x),marker="s",s=30,c="r")  # s:大小 c:颜色

plt.show()

在这里插入图片描述

(2)颜色设置

x = np.linspace(0, 10, 10)
y = x ** 2
plt.scatter(x, y, c=y, cmap="Blues")
# c=y:散点的颜色根据y值的大小而变化
plt.colorbar()
plt.show()

在这里插入图片描述
颜色配置参考官方文档:
https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html

(3)根据数据控制点的大小

x,y,colors,size = (np.random.rand(100) for i in range(4))
plt.scatter(x,y,c=colors,s=1000*size,cmap="viridis")

plt.colorbar()
plt.show()

在这里插入图片描述

(4)透明度

x,y,colors,size = (np.random.rand(100) for i in range(4))
plt.scatter(x,y,c=colors,s=1000*size,cmap="viridis",alpha=0.3)

plt.colorbar()
plt.show()

在这里插入图片描述

3、柱形图

(1)简单柱形图

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(1,6)
plt.bar(x,2*x,align="center",width=0.5,alpha=0.5,color="yellow",edgecolor="red")
plt.xticks(x,("G1","G2","G3","G4","G5"))
plt.tick_params(axis="both",labelsize=13)

plt.show()

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt

x = ["G"+str(i) for i in range(5)]
y = 1/(1+np.exp(-np.arange(5)))
colors = ["red","yellow","blue","green","gray"]
plt.bar(x,y,align="center",width=0.5,alpha=0.5,color=colors)
plt.tick_params(axis="both",labelsize=13)

plt.show()

在这里插入图片描述

(2)累加柱形图

import numpy as np
import matplotlib.pyplot as plt

x= np.arange(5)
y1 = np.random.randint(20,30,size=5)
y2 = np.random.randint(20,30,size=5)
plt.bar(x,y1,width=0.5,label="man")
plt.bar(x,y2,width=0.5,bottom=y1,label="woman")
plt.legend()
plt.show()

在这里插入图片描述

(3)并列柱形图

import numpy as np
import matplotlib.pyplot as plt

x= np.arange(15)
y1 = x+1
y2 = y1+np.random.random(15)
plt.bar(x,y1,width=0.3,label="man")
plt.bar(x+0.3,y2,width=0.3,label="woman")
plt.legend()
plt.show()

在这里插入图片描述

(4)横向柱形图

import numpy as np
import matplotlib.pyplot as plt

x = ["G"+str(i) for i in range(1,6)]
y = 2 * np.arange(1,6)
plt.barh(x,y,align="center",height=0.5,alpha=0.8,color="blue",edgecolor="red")
plt.tick_params(axis="both",labelsize=13)
plt.show()

在这里插入图片描述

4、多子图

(1)简单多子图

import numpy as np
import matplotlib.pyplot as plt

def f(t):
    return np.exp(-t)*np.cos(2*np.pi*t)

t1 = np.arange(0.0,5.0,0.1)
t2 = np.arange(0.0,5.0,0.2)

plt.subplot(211)    # 总共2行1列子图网格,当前选中第1个子图
plt.plot(t1,f(t1),"bo-",markerfacecolor="r",markersize=5)
plt.title("A tale of 2 subplots")
plt.ylabel("Damped oscillation")

plt.subplot(212)    # 总共2行1列子图网格,当前选中第2个子图
plt.plot(t2,np.cos(2*np.pi*t2),"r--")
plt.xlabel("time(s)")
plt.ylabel("Undamped")

plt.show()

在这里插入图片描述

(2)多行多列子图

import numpy as np
import matplotlib.pyplot as plt

x = np.random.random(10)
y = np.random.random(10)

plt.subplots_adjust(hspace=0.5,wspace=0.3)  # 调整子图之间的水平和垂直间距

plt.subplot(321)
plt.scatter(x,y,s=80,c="b",marker=">")

plt.subplot(322)
plt.scatter(x,y,s=80,c="g",marker="*")

plt.subplot(323)
plt.scatter(x,y,s=80,c="r",marker="s")

plt.subplot(324)
plt.scatter(x,y,s=80,c="c",marker="p")

plt.subplot(325)
plt.scatter(x,y,s=80,c="m",marker="+")

plt.subplot(326)
plt.scatter(x,y,s=80,c="y",marker="H")

plt.show()

在这里插入图片描述

(3)不规则多子图

import matplotlib.pyplot as plt
import numpy as np


def f(x):
    return np.exp(-x) * np.cos(2*np.pi*x)

x = np.arange(0.0, 3.0, 0.01)
grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3)

plt.subplot(grid[0, 0])
plt.plot(x, f(x))

plt.subplot(grid[0, 1:])
plt.plot(x, f(x), "r--", lw=2)

plt.subplot(grid[1, :])
plt.plot(x, f(x), "g-", lw=3)
plt.show()

在这里插入图片描述

5、直方图

(1)普通频次直方图

import matplotlib.pyplot as plt
import numpy as np


mu, sigma = 100,15
x = mu + sigma * np.random.randn(1000)

plt.hist(x, bins=50, facecolor="g", alpha=0.75)

plt.show()

在这里插入图片描述

(2)概率密度

import matplotlib.pyplot as plt
import numpy as np

mu, sigma = 100,15
x = mu + sigma * np.random.randn(1000)

plt.hist(x, 50, density=True, color="r")
plt.xlabel("Smarts")
plt.ylabel("Probability")
plt.title("Histogram of IQ")
plt.text(60, .025, r"$\mu=100,\ \sigma=15$")
plt.xlim(40, 160)
plt.ylim(0, 0.03)

plt.show()

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np

mu, sigma = 100,15
x = mu + sigma * np.random.randn(1000)

plt.hist(x, 50, density=True, color="r", histtype="step")
plt.xlabel("Smarts")
plt.ylabel("Probability")
plt.title("Histogram of IQ")
plt.text(60, .025, r"$\mu=100,\ \sigma=15$")
plt.xlim(40, 160)
plt.ylim(0, 0.03)

plt.show()

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm

mu, sigma = 100,15
x = mu + sigma * np.random.randn(10000)

_, bins, __=plt.hist(x, 50, density=True)
y = norm.pdf(bins, mu, sigma)
plt.plot(bins, y, "r--", lw=3)
plt.xlabel("Smarts")
plt.ylabel("Probability")
plt.title("Histogram of IQ")
plt.text(60, .025, r"$\mu=100,\ \sigma=15$")
plt.xlim(40, 160)
plt.ylim(0, 0.03)

plt.show()

在这里插入图片描述

(3)累计概率分布

import matplotlib.pyplot as plt
import numpy as np

mu, sigma = 100,15
x = mu + sigma * np.random.randn(10000)

plt.hist(x, 50, density=True, cumulative=True, color="r")

plt.xlabel("Smarts")
plt.ylabel("Probability")
plt.title("Histogram of IQ")
plt.text(60, 0.8, r"$\mu=100,\ \sigma=15$")
plt.xlim(50, 165)
plt.ylim(0, 1.1)

plt.show()

在这里插入图片描述

(4)例:模拟两个骰子

import matplotlib.pyplot as plt
import numpy as np

class Die():
    "模拟一个骰子的类"

    def __init__(self, num_sides=6):
        self.num_sides = num_sides

    def roll(self):
        return np.random.randint(1, self.num_sides+1)

# 重复投一个骰子
die = Die()
results = []
for i in range(60000):
    result = die.roll()
    results.append(result)

plt.hist(results, bins=6, range=(0.75, 6.75), align="mid", width=0.5)
plt.xlim(0, 7)

plt.show()

在这里插入图片描述

# 重复投两个骰子
die1 = Die()
die2 = Die()
results = []
for i in range(60000):
    result = die1.roll() + die2.roll()
    results.append(result)

plt.hist(results, bins=11, range=(1.75, 12.75), align="mid", width=0.5)
plt.xlim(0, 13)
plt.xticks(np.arange(1, 14))

plt.show()

在这里插入图片描述

# 重复投两个骰子
die1 = Die()
die2 = Die()
results = []
for i in range(60000):
    result = die1.roll() + die2.roll()
    results.append(result)

plt.hist(results, bins=11, range=(1.75, 12.75), density=True, align="mid", width=0.5)
plt.xlim(0, 13)
plt.xticks(np.arange(1, 14))

plt.show()

在这里插入图片描述

6、误差图

(1)基本误差图

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 50)
dy = 0.5
y = np.sin(x) + dy*np.random.randn(50)

plt.errorbar(x, y, yerr=dy, fmt="+b")

plt.show()

在这里插入图片描述

(2)柱形图误差图

import matplotlib.pyplot as plt
import numpy as np

menMeans = (20, 35, 30, 35, 27)
womenMeans = (25, 32, 34, 20, 25)
menStd = (2, 3, 4, 1, 2)
womenStd = (3, 5, 2, 3, 3)
ind = ["G1", "G2", "G3", "G4", "G5"]
width = 0.35

p1 = plt.bar(ind, menMeans, width=width, label="Men", yerr=menStd)
p2 = plt.bar(ind, womenMeans, width=width, bottom=menMeans, label="Women", yerr=womenStd)

plt.ylabel("Scores")
plt.title("Scores by group and gender")
plt.yticks(np.arange(0, 81, 10))
plt.legend()
plt.show()

在这里插入图片描述

三、面相对象的风格简介

1、普通图

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 5, 10)
y = x ** 2

fig = plt.figure(figsize=(8,4), dpi=80)	# 设置画布对象
axes = fig.add_axes([0.1, 0.1, 0.8, 0.8])	# 设置轴 [left,bottom,width,height]与画布的比例
axes.plot(x, y, "r")
axes.set_xlabel("x")
axes.set_ylabel("y")
axes.set_title("title")
plt.show()

在这里插入图片描述

2、画中画

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 5, 10)
y = x ** 2

fig = plt.figure()
ax1 = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax2 = fig.add_axes([0.2, 0.5, 0.4, 0.3])

ax1.plot(x, y, "r")

ax1.set_xlabel("x")
ax1.set_ylabel("y")
ax1.set_title("title")

ax2.plot(y, x, "g")
ax2.set_xlabel("y")
ax2.set_ylabel("x")
ax2.set_title("insert title")

plt.savefig("1.png")
plt.show()

在这里插入图片描述

3、多子图

import matplotlib.pyplot as plt
import numpy as np

def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 3.0, 0.01)

fig = plt.figure()
fig.subplots_adjust(hspace=0.4, wspace=0.4)

ax1 = plt.subplot(2, 2, 1)
ax1.plot(t1, f(t1))
ax1.set_title("Upper left")

ax2 = plt.subplot(2, 2, 2)
ax2.plot(t1, f(t1))
ax2.set_title("Upper right")

ax3 = plt.subplot(2, 1, 2)
ax3.plot(t1, f(t1))
ax3.set_title("Lower")

plt.savefig("1.png")
plt.show()

在这里插入图片描述

四、三维图形简介

1、三维数据点与线

import matplotlib.pyplot as plt
import numpy as np

ax = plt.axes(projection="3d")
zline = np.linspace(0, 15, 1000)
xline = np.sin(zline)
yline = np.cos(zline)
ax.plot3D(xline, yline, zline)

zdata = 15*np.random.random(100)
xdata = np.sin(zdata)
ydata = np.cos(zdata)

ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap="spring")

plt.savefig("1.png")
plt.show()

在这里插入图片描述

2、三维数据曲面图

import matplotlib.pyplot as plt
import numpy as np

def f(x, y):
    return np.sin(np.sqrt(x**2 + y**2))

x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)

ax = plt.axes(projection="3d")
ax.plot_surface(X, Y, Z, cmap="viridis")

plt.savefig("1.png")
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/519323.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入浅出 -- 系统架构之分布式CAP理论和BASE理论

科技进步离不开理论支撑,而当下大行其道的分布式架构,透过繁荣昌盛表象,底层同样离不开诸多分布式理论撑持。当然,相信诸位在学习分布式相关技术时,必然学到过两个分布式领域中的基础理论,即:CA…

设置Chrome打开链接在新标签页显示

Chrome版本 版本 123.0.6312.106(正式版本) (64 位) 下面这两个页面都有设置按钮: https://www.google.com/?pli1或者https://www.google.com/?hlzh-CN 要先退出账号,要不然看不到右下角的 “设置” 。…

SpamSieve mac垃圾邮件过滤器 直装激活版

SpamSieve通过强大的垃圾邮件过滤技术,帮助用户有效管理和消除不想要的电子邮件。它能与多种电子邮件客户端无缝集成,如Apple Mail、Microsoft Outlook、Airmail等。 软件下载:SpamSieve mac直装激活版下载 该软件利用先进的算法和机器学习技…

Vue知识点(学习笔记)

Vue知识点学习 一、Vue快速上手1. 脚本引用 二、Vue小知识1. 简写v-bindv-modelel和data的两种写法:eldata 2. MVVM模型3. Object.defineproperty方法4. Vue的数据代理5. 事件处理6. 阻止默认事件7. Vue中事件修饰符:8. 引入Element-Ui 一、Vue快速上手 …

虚幻UE5数字孪生蓝图开发教程

一、背景 这几年,智慧城市/智慧交通/智慧水利等飞速发展,骑士特意为大家做了一个这块的学习路线。 二、这是学习大纲 1.给虚幻UE5初学者准备的智慧城市/数字孪生蓝图开发教程 https://www.bilibili.com/video/BV1894y1u78G 2.UE5数字孪生蓝图开发教学…

BPMNJS 在原生HTML中的引入与使用

BPMNJS 在HTML中的引入与使用 在网上看到的大多是基于vue使用BPMN的示例或者教程,竟然没有在HTML使用的示例,有也是很简单的介绍核心库的引入和使用,并没有涉及到扩展库。于是简单看了下,真的是一波三折,坎坎坷坷。不…

FreeRtos入门-5 任务通知

在FreeRTOS中,任务通知、队列、信号量和事件组都是用于任务间通信和同步的机制,但它们各自具有不同的特性和适用场景。 任务通知的主要优势在于其高效性和明确性。使用任务通知发送事件或数据给某个任务时,效率更高,且可以明确指定…

Tuxera2023 NTFS for Mac下载,安装和序列号激活

对于必须在Windows电脑和Mac电脑之间来回切换的Mac朋友来说,跨平台不兼容一直是一个巨大的障碍,尤其是当我们需要使用NTFS格式的硬盘在Windows和macOS之间共享文件时。因为Mac默认不支持写入NTFS磁盘。 为了解决这一问题,很多朋友会选择很便捷…

linux操作系统安装及命令初识,上岸蚂蚁金服

310 包) desktop 1800个包左右 内容必须大于 768M 系统设置 分区设置 挂载点 /boot / swap 交换分区–占用磁盘容量 网络配置 网卡配置 设置为ON 主机名配置 Begin installation 设置 root 用户密码 命令初识 命令 选项 参数: 命令选项参数…

Restful Web Service

Restful 1.特点 RESTful是一种架构风格,强调简单、轻量级和对资源的状态less操作。RESTful是通过HTTP协议进行通信的。RESTful的应用程序可以调用运行在不同服务器上的服务或函数。RESTful的接口通常使用JSON,但实际上它们都支持多种数据格式。RESTful…

Trace链异常检测汇总

微服务应用与单块应用完全不同,一个微服务系统少则有几十个微服务组成,多则可能有上百个服务。比如BAT级别的互联网公司,一般都超过上百个服务,服务之间的依赖关系错综复杂,如果没有有效的监控手段,那么出现…

风控系统之普通规则条件,使用LiteFlow实现

个人博客:无奈何杨(wnhyang) 个人语雀:wnhyang 共享语雀:在线知识共享 Github:wnhyang - Overview 提要 参考:智能风控筑基手册:全面了解风控决策引擎 前面有可配置输入参数的接…

Gson的用法

1. 导入依赖 <dependency><groupId>com.google.code.gson</groupId><artifactId>gson</artifactId><version>2.8.6</version> </dependency> 2. 使用Gson进行解析 2.1 Gson解析普通对象 package com.jiang.partnetbackend.…

六、企业级架构缓存篇之memcached

一、memcached概述 1、网站架构优化流程&#xff1a; LNMP架构中网站应用访问流程&#xff1a; 浏览器 (app) → web 服务器 → 后端服务 (php) → 数据库 (mysql) 访问流程越多&#xff0c;访问速度越慢&#xff0c;出现问题的几率也越大。 网站访问流程优化思路&#xff1…

软件测试(测试用例详解)(三)

1. 测试用例的概念 测试用例&#xff08;Test Case&#xff09;是为了实施测试而向被测试的系统提供的一组集合。 测试环境操作步骤测试数据预取结果 测试用例的评价标准&#xff1a; 用例表达清楚&#xff0c;无二义性。。用例可操作性强。用例的输入与输出明确。一条用例只有…

c语言之向main函数传递参数

在c语言中&#xff0c;main函数也是可以传递传递参数的&#xff0c;业内向main函数传递参数的格式是 main(int argc,char *argv[]) 向main函数传递参数不是通过代码传递的&#xff0c;一般是通过dos命令传递 举个例子 #include<stdio.h> void main(int argc,char *ar…

算法刷题应用知识补充--基础算法、数据结构篇

这里写目录标题 位运算&#xff08;均是拷贝运算&#xff0c;不会影响原数据&#xff0c;这点要注意&#xff09;&、|、^位运算特性细节知识补充对于n-1的理解异或来实现数字交换找到只出现一次的数据&#xff0c;其余数据出现偶数次 >> 、<<二进制中相邻的位的…

算法设计与分析实验报告c++实现(排序算法、三壶谜题、交替放置的碟子、带锁的门)

一、实验目的 1&#xff0e;加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握&#xff1b; 2&#xff0e;提高学生利用课堂所学知识解决实际问题的能力&#xff1b; 3&#xff0e;提高学生综合应用所学知识解决实际问题的能力。 二、实验任务 1、 编…

为什么mac文件拖拽不了 mac文件拖不进硬盘里 macbookpro文件无法拖进移动硬盘 Tuxera NTFS for Mac 2023绿色

如果你是一位Mac用户&#xff0c;你可能会遇到这样的问题&#xff1a;你想把Mac上的文件拖拽到其他位置&#xff0c;比如桌面、文件夹或者外接硬盘&#xff0c;但是却发现无法操作&#xff0c;这是为什么呢&#xff1f;这篇文章将为你解答为什么mac文件拖拽不了&#xff0c;以及…

Web安全-浏览器安全策略及跨站脚本攻击与请求伪造漏洞原理

Web安全-浏览器安全策略及跨站脚本攻击与请求伪造漏洞原理 Web服务组件分层概念 静态层 &#xff1a;web前端框架&#xff1a;Bootstrap&#xff0c;jQuery,HTML5框架等&#xff0c;主要存在跨站脚本攻击脚本层&#xff1a;web应用&#xff0c;web开发框架&#xff0c;web服务…