基于Python近红外光谱分析与机器学、深度学习方法融合技术应用

郁磊副教授,主要从事MATLAB 编程、机器学习与数据挖掘、数据可视化和软件开发、人工智能近红外光谱分析、生物医学系统建模与仿真,具有丰富的实战应用经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。已发表多篇高水平的国际学术研究论文。

第一章、Python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、常见的错误与程序调试

5、第三方模块的安装与使用

6、文件读写(I/O)

7、实操

第二章、Python进阶与提高

1、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

2、Pandas模块库(DataFrame数据结构、表格的变换、排序、拼接、融合、分组操作等)

3、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)

4、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

5、Scikit-Learn模块库简介、下载与安装

6、实操

第三章、多元线性回归及其在近红外光谱分析中的应用

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、案例演示:近红外光谱回归拟合建模

第四章、BP神经网络及其在近红外光谱分析中的应用

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?BP神经网络建模的本质是什么?)

2、怎样划分训练集和测试集?为什么需要归一化?归一化是必须的吗?BP神经网络的常用激活函数有哪些?如何查看模型的参数?

3、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)

4、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等)

5、极限学习机(Extreme Learning Machine, ELM)的基本原理(ELM的基本算法,“极限”体现在哪些地方?ELM 与 BP 神经网络的区别与联系)

6、BP神经网络、极限学习机的Python代码实现

7、案例演示:

1)近红外光谱回归拟合建模;

2)近红外光谱分类识别建模

第五章、支持向量机(SVM)及其在近红外光谱分析中的应用

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题?SVM除了建模型之外,还可以帮助我们做哪些事情?SVM的启发:样本重要性的排序及样本筛选)

3、SVM的Python代码实现

4、案例演示:近红外光谱分类识别建模

第六章、决策树、随机森林、Adaboost、XGBoost和LightGBM及其在近红外光谱分析中的应用

1、决策树的基本原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系)

2、决策树的启发:变量重要性的排序及变量筛选

3、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

4、Bagging与Boosting集成策略的区别

5、Adaboost算法的基本原理

6、Gradient Boosting Decision Tree (GBDT)模型的基本原理

7、XGBoost与LightGBM简介

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

9、案例演示:近红外光谱回归拟合建模

第七章、遗传算法及其在近红外光谱分析中的应用

1、群优化算法概述

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、案例演示:基于二进制遗传算法的近红外光谱波长筛选

第八章、变量降维与特征选择算法及其在近红外光谱分析中的应用

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS的Python代码实现

5、特征选择算法的Python代码实现

6、案例演示:

1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

第十章、卷积神经网络及其在近红外光谱分析中的应用

1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、卷积神经网络参数调试技巧

4、卷积神经网络的Python代码实现

5、案例演示:基于卷积神经网络的近红外光谱建模

第十一章、迁移学习及其在近红外光谱分析中的应用

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法简介(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

5、案例演示:基于迁移学习的近红外光谱的模型传递(模型移植)

第十二章、自编码器及其在近红外光谱分析中的应用

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、案例演示:

1)基于自编码器的近红外光谱数据预处理

2)基于自编码器的近红外光谱数据降维与有效特征提取

第十三章、复习与答疑

1、复习与总结(知识点梳理)

2、资料分享(图书、在线课程资源、源代码等)

3、科研与创新方法总结(如何利用Google Scholar、Sci-Hub、ResearchGate等工具查阅文献资料、配套的数据和代码?如何更好地撰写论文的Discussion部分?如果在算法层面上难以做出原创性的工作,如何结合实际问题提炼与挖掘创新点?)

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247637090&idx=5&sn=3d8cf7ba5f41b6985e877705f17e6672&chksm=fa77875fcd000e495935c98a9c4a3493171d41252c228a18f9eee67de59339248a5092dac07a&token=1814394799&lang=zh_CN&scene=21#wechat_redirect

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/518288.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

6:算法基础--6.1:线性结构 ,6.2:查找算法

转上一节: http://t.csdnimg.cn/ql5Cdhttp://t.csdnimg.cn/ql5Cd 课程内容提要: 6:知识点考点详解 6.1:线性结构 通常分析时间复杂度的方法是从算法中选取-种对于所研究的问题来说是基本运算的操作,以 该操作重…

51单片机入门:认识开发板

认识开发板 板载资源: 数码管模块 说明: 2个四位一体共阴数码管 详细: 2个四位一体:两个独立的四位数码管,每个四位数码管都是“一体”的设计,也就是说,每个数码管内部集成了四个独立的七段LE…

【Linux】Ubuntu 磁盘管理

准备一个U盘或者SD卡(含读卡器),并将其格式化成 FAT32 格式,不要使用NTFS格式(这是微软的专利,大部分Linux系统不支持)和exFAT格式(有的Linux系统也不支持)。 如果Ubun…

Lafida多目数据集实测

Lafida 数据集 paper:J. Imaging | Free Full-Text | LaFiDa—A Laserscanner Multi-Fisheye Camera Dataset 官网数据:https://www.ipf.kit.edu/english/projekt_cv_szenen.php 官网:KIT-IPF-Software and Datasets - LaFiDa 标定数据下载&…

【蓝桥杯嵌入式】9届程序题刷题记录及反思

一、题目内容分析 二、LCD单字符高亮显示实现 本次要求显示两个字符&#xff0c;此函数高亮pos及它后面一个字符 void highlight(uint8_t *str,uint8_t pos) {int i 0;for(i 0; i < 20; i){if(i ! pos && i! (pos1))LCD_DisplayChar(Line3,(320 - (16 * i)),st…

Python输出不了中文怎么解决

在文件头加上#encoding&#xff1a;utf-8即可。 # encoding: utf-8 print helloworld print u"学习" print (unicode("学习", encoding"utf-8")) shell输出&#xff1a; helloworld 学习 学习 还可以用#-*- coding: UTF-8 -*- 来指定。

LangChain学习笔记—RAG(检索增强生成)

LangChain LangChain是一个软件开发框架&#xff0c;可以更轻松地使用大型语言模型&#xff08;LLM&#xff09;创建应用程序。它是一个具有 Python 和 JavaScript 代码库的开源工具。LangChain 允许开发人员将 GPT-4 等 LLM 与外部数据相结合&#xff0c;为聊天机器人、代码理…

C++ | Leetcode C++题解之第10题正则表达式匹配

题目&#xff1a; 题解&#xff1a; class Solution { public:bool isMatch(string s, string p) {int m s.size();int n p.size();auto matches [&](int i, int j) {if (i 0) {return false;}if (p[j - 1] .) {return true;}return s[i - 1] p[j - 1];};vector<…

WGCAT工单系统使用指南 - 工单有哪几种状态

WGCAT工单管理系统设计的工单生命周期比较简单易懂 1、待接收 2、处理中 3、已拒绝 4、已完成 5、已关闭

CYP450综述-20年-地表最强系列-文献精读-4

Discovery and modification of cytochrome P450 for plant natural products biosynthesis 发现与改造细胞色素P450以合成植物天然产品 一篇关于植物CYP450的综述&#xff0c;地表最强&#xff0c;总结的最全面的版本之一&#xff0c;各位看官有推荐请留言评论区~ Discovery…

App.vue触发axios报错及解决方案

App.vue触发axios报错及解决方案 修改根目录下vue.config.js文件 module.exports {publicPath: ./,assetsDir: assets,configureWebpack: {devServer: {client: {overlay: false}}} }重新npm run dev 搞定

python作业

1.找出10000以内能被5或6整除&#xff0c;但不能被两者同时整除的数(函数) 2.写一个方法&#xff0c;计算列表所有偶数下标元素的和(注意返回值) 3.根据完整的路径从路径中分离文件路径、文件名及扩展名。 4.根据标点符号对字符串进行分行 5.去掉字符串数组中每个字符串的空格 …

波奇学Linux:

面向数据报&#xff1a;udp没有发送缓冲区&#xff0c;发送几次数据报&#xff0c;读取几次数据报&#xff0c;write和read一一对应 tcp通信时只管识别数据&#xff0c;在应用层才对字节进行拼接分析&#xff0c;得到完整请求 简单来说&#xff1a;udp之间传递的是报文&#x…

【打印SQL执行日志】⭐️Mybatis-Plus通过配置在控制台打印执行日志

目录 前言 一、Mybatis-Plus 开启日志的方式 二、测试 三、日志分析 章末 前言 小伙伴们大家好&#xff0c;相信大家平时在处理问题时都有各自的方式&#xff0c;最常用以及最好用的感觉还是断点调试&#xff0c;但是涉及到操作数据库的执行时&#xff0c;默认的话在控制台…

Excel、PowerQuery 和 ChatGPT 终极手册(上)

原文&#xff1a;Ultimate ChatGPT Handbook for Enterprises 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 序言 在不断发展的数据管理和分析领域中&#xff0c;掌握 Excel 的查找功能不仅是一种技能&#xff0c;更是高效数据处理的基石。《使用 Power Query 和 Ch…

kex_exchange_identification: read: Connection reset by peer

换一台机器&#xff0c;登录到远程ip地址&#xff0c;查看ssh的日志。 sudo grep ssh /var/log/auth.log | grep 8.22(登录失败的ip) 可以看到&#xff0c;刚开始是因为登录密码不对&#xff0c;后边是直接拒绝了。应该是sshd的一种保护机制.超过多少次失败&#xff0c;后…

【热门话题】计算机视觉入门:探索数字世界中的“视觉智能”

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 计算机视觉入门&#xff1a;探索数字世界中的“视觉智能”摘要正文一、计算机视…

@RequstBody,IOC,DI,@Autowired,@Resource,lombok,

要使用Jason数据格式必须用post方法&#xff0c;因为是通过请求体传送的&#xff0c;get没有请求体 Data不包括有参构造和无参构造方法

在project模式下使用Implementation Runs窗口

要在“Implementation Runs”窗口中启动active implementation run&#xff0c;请执行以下任一操作&#xff1a; • 在Flow Navigator中选择“Run Implementation”。 • 在主菜单中选择“Flow > Run Implementation”。 • 从工具栏菜单中选择“Run Implementation”。 • …

【剑指offr--C/C++】JZ55 二叉树的深度

一、题目 求二叉树深度两个思路&#xff1a;递归、层次遍历。 二、递归思路及代码 每一个节点的深度都max{左子树深度&#xff0c;右子树深度}1。所以可以使用递归 /* struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;TreeNode(int x) :val(x), left…