代码随想录算法训练营第二十三天| 669.修建二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树

系列文章目录


目录

  • 系列文章目录
  • 669. 修剪二叉搜索树
    • ①递归法
    • ②迭代法(不好想出,掌握递归即可)
  • 108.将有序数组转换为二叉搜索树
    • 递归法
      • [左闭右开)
      • [左闭右闭]
  • 538.把二叉搜索树转换为累加树
    • ①递归法-反中序遍历(右中左)+双指针
    • ②迭代法-反中序遍历(右中左)+双指针
      • 统一迭代法
      • 普通迭代法


669. 修剪二叉搜索树

①递归法

:不能在遇到 root.val < low || root.val > high 的时候直接return null,因为下图所示:在这里插入图片描述
[1, 3]区间在二叉搜索树的中可不是单纯的节点3和左孩子节点0就决定的,还要考虑节点0的右子树。节点0并不符合区间要求,那么将节点0的右孩子 节点2 直接赋给 节点3的左孩子就可以了(就是把节点0从二叉树中移除),如下图所示:
在这里插入图片描述

class Solution {
    public TreeNode trimBST(TreeNode root, int low, int high) {
        //确定终止条件
        if (root == null) return null;

        //确定单层递归的逻辑
        //中
        //如果root(当前节点)的元素小于low的数值,那么应该递归右子树,并返回右子树符合条件的头结点。
        if (root.val < low) {
            return trimBST(root.right, low, high);
        }
        //如果root(当前节点)的元素大于high的,那么应该递归左子树,并返回左子树符合条件的头结点。
        if (root.val > high) {
            return trimBST(root.left, low, high);
        }
        root.left = trimBST(root.left, low, high);//左 接入符合条件的左子树
        root.right = trimBST(root.right, low, high);//右 接入符合条件的右子树
        return root;
    }
}

②迭代法(不好想出,掌握递归即可)

  1. 因为二叉搜索树的有序性,不需要使用栈模拟递归的过程。
  2. 在剪枝的时候,可以分为三步:
    • root移动到[L, R] 范围内,注意是左闭右闭区间;
    • 剪枝左子树;
    • 剪枝右子树;
class Solution {
    public TreeNode trimBST(TreeNode root, int low, int high) {
        if (root == null) return null;
        //中 确定最后要返回的根节点
        while (root != null && (root.val < low || root.val > high)) {
            if (root.val < low) {
                root = root.right;
            } else {
                root = root.left;
            }
        }

        //在根节点一定在区间内的前提下,剪枝
        //左、对左子树剪枝,左子树的所有节点都小于high,只需要判断是否小于low
        TreeNode curr = root;
        while (curr != null) {
            // 如果左节点的值小于low,证明左节点以及左节点的左子树都小于low,要剪掉,继续判断左节点的右子树即可
            while (curr.left != null && curr.left.val < low) {
                curr.left = curr.left.right;
            }
            // 现在的左节点大于等于low,则继续往左遍历
            curr = curr.left;
        }

        //右 对右子树剪枝,右子树的所有节点都大于low,只需要判断节点是否大于high
        curr = root;
        // 如果右节点的值大于high,证明右节点以及右节点的的右子树都大于high,要剪掉,继续判断右节点的左子树即可
        while (curr != null) {
            while (curr.right != null && curr.right.val > high) {
                curr.right = curr.right.left;
            }
            // 现在的右节点小于等于high,则继续往右遍历
            curr = curr.right;
        }
        return root;
    }
}

108.将有序数组转换为二叉搜索树

本质就是寻找分割点,分割点作为当前节点,然后递归左区间和右区间。分割点就是数组中间位置的节点。如果数组长度为偶数,中间节点有两个,取哪一个都可以,只不过构成了不同的平衡二叉搜索树。

递归法

1.在构造二叉树的时候尽量不要重新定义左右区间数组,而是用下标来操作原数组。
2.取数组中间元素的位置,不难写出int mid = (left + right) / 2;,这么写其实有一个问题,就是数值越界,例如leftright都是最大int,这么操作就越界了,尤其需要注意!所以可以这么写:int mid = left + ((right - left) / 2);

[左闭右开)

class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return makeBST(nums, 0, nums.length);
    }

    //左闭右开
    public TreeNode makeBST(int[] nums, int begin, int end) {
        //终止条件
        if (begin >= end) return null;
        //单层循环逻辑
        // 构建平衡二叉树的关键是选中间/靠近的节点作为根节点
        int index = begin + (end - begin) / 2;//中节点索引
        int rootVal = nums[index];
        TreeNode root = new TreeNode(rootVal);//构造根节点

        // 构建左右子树
        root.left = makeBST(nums, begin, index);
        root.right = makeBST(nums, index + 1, end);
        return root;
    }
}

[左闭右闭]

class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return makeBST(nums, 0, nums.length - 1);
    }

    public TreeNode makeBST(int[] nums, int begin, int end) {
        //终止条件
        if (begin > end) return null;
        //单层循环逻辑
        int index = begin + (end - begin) / 2;
        int rootVal = nums[index];
        TreeNode root = new TreeNode(rootVal);//创建根节点
        root.left = makeBST(nums, begin, index - 1);
        root.right = makeBST(nums, index + 1, end);
        return root;
    }
}

538.把二叉搜索树转换为累加树

这是一棵树,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13]。从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了。本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。

①递归法-反中序遍历(右中左)+双指针

class Solution {
    TreeNode pre = null;
    int value = 0;

    public TreeNode convertBST(TreeNode root) {
        if (root == null) return null;
        root.right = convertBST(root.right);//右
        if (pre != null) {//中
            root.val += pre.val;
        }
        pre = root;
        root.left = convertBST(root.left);//左
        return root;
    }
}

②迭代法-反中序遍历(右中左)+双指针

统一迭代法

class Solution {
    public TreeNode convertBST(TreeNode root) {
        if (root == null) return null;
        Stack<TreeNode> st = new Stack<TreeNode>();
        st.push(root);
        TreeNode pre = null;
        while (!st.isEmpty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop();
                if (node.left != null) st.push(node.left);//左
                st.push(node);//中
                st.push(null);
                if (node.right != null) st.push(node.right);//右
            } else {//中节点处理逻辑
                st.pop();
                node = st.pop();
                if (pre != null) {
                    node.val += pre.val;
                }
                pre = node;
            }
        }
        return root;
    }
}

普通迭代法

class Solution {
    public TreeNode convertBST(TreeNode root) {
        if (root == null) return null;
        Stack<TreeNode> st = new Stack<TreeNode>();
        TreeNode cur = root;
        TreeNode pre = null;
        while (cur != null || !st.isEmpty()) {
            if (cur != null) {
                st.push(cur);
                cur = cur.right;//右
            } else {
                cur = st.pop();//中
                if (pre != null) {
                    cur.val += pre.val;
                }
                pre = cur;
                cur = cur.left;
            }
        }
        return root;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/516459.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯练习笔记(十七)

蓝桥杯练习笔记&#xff08;十七&#xff09; 一、 输入样例 7 7 1000001 0100010 0010100 0001AAA 00010A0 00010A0 00010A0蓝桥官网题解&#xff1a; 该题解是用了三个循环分别对三个方向的相同字符的长度进行统计&#xff0c;找出最大长度&#xff0c;最后对找出的最长Y进…

五、企业级架构之Nginx负载均衡

一、负载均衡技术 1、介绍&#xff1a; 负载均衡技术&#xff08;Load Balance&#xff09;是一种概念&#xff0c;其原理就是把分发流量、请求到不同的服务器&#xff0c;平均分配用户请求。 2、作用&#xff1a; ① 流量分发&#xff0c;请求平均&#xff0c;提高系统处理…

【SQL Server的详细使用教程】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

Free MyBatis Tool插件的进阶使用指南(消灭dao层的繁琐编码)

目录 零、起因一、怎么使用Free MyBatis Tool插件&#xff1f;1 基本使用2 进阶使用&#xff08;搞清楚Options的用法&#xff09;2.1 概览2.2 详述2.2.0 Options&#xff08;一项都不勾选&#xff09;2.2.1 Use-Lombok【消除UserDO中的getter和setter代码】2.2.2 Comment&…

《QT实用小工具·十二》邮件批量发送工具

1、概述 源码放在文章末尾 该项目实现了邮件的批量发送&#xff0c;如下图所示&#xff1a; 项目部分代码如下所示&#xff1a; #ifndef SMTPCLIENT_H #define SMTPCLIENT_H#include <QtGui> #include <QtNetwork> #if (QT_VERSION > QT_VERSION_CHECK(5,0,…

.kat6.l6st6r勒索病毒肆虐,这些应对策略或许能帮到你

引言&#xff1a; 近年来&#xff0c;网络安全问题日益凸显&#xff0c;其中勒索病毒更是成为了公众关注的焦点。其中&#xff0c;.kat6.l6st6r勒索病毒以其独特的传播方式和破坏力&#xff0c;给全球用户带来了极大的困扰。本文将深入探讨.kat6.l6st6r勒索病毒的特点&#xf…

DIY蓝牙键盘(1) - 理解 键盘报文(免费)

DIY蓝牙键盘(1) - 理解键盘报文 1. 键盘报文体验 一个键盘对于用户的体验是&#xff0c;用户按按键A他能看到字母A会在主机上显示出来。那这是如何实现的&#xff1f; 其实很简单&#xff0c;只要键盘发送下面的两个报文给主机&#xff0c;字母A就能在主机上显示出来。 (1)…

深入理解C/C++的内存管理

在C和C中&#xff0c;高效的内存管理是编写性能优化和资源高效利用程序的关键。本文将深入探讨C/C内存管理的各个方面&#xff0c;包括内存的分布、C语言和C中的动态内存管理方式&#xff0c;以及new和delete操作符的使用 C/C内存分布 C和C程序的内存可以分为以下几个区域&…

MySQL安装卸载-合

目录 1.Linux下安装 1.1下载 1.2.上传 ​​​​​​​1.3.解压 ​​​​​​​1.4.安装 ​​​​​​​1.5.启动服务 ​​​​​​​1.6.查询临时密码 ​​​​​​​1.7.修改临时密码 ​​​​​​​1.8.创建用户 ​​​​​​​1.9.分配权限 ​​​​​​​1.10.重…

00-JAVA基础-脚本引擎

JAVA脚本引擎 什么是JAVA脚本引擎 Java 平台自带了如JavaScript、Groovy等脚本语言的引擎&#xff0c;可以在运行时动态地加载和执行脚本代码。这些脚本引擎可以直接在Java应用程序中使用&#xff0c;例如&#xff0c;通过ScriptEngineManager来获取特定脚本语言的ScriptEngi…

第18讲:数据在内存中的存储

⽬录 1. 整数在内存中的存储 2. ⼤⼩端字节序和字节序判断 3. 浮点数在内存中的存储 ——————————————————————————————————————————— 1. 整数在内存中的存储 在讲解操作符的时候&#xff0c;我们就讲过了下⾯的内容&#x…

如何保持数据一致性

如何保持数据一致性 数据库和缓存&#xff08;比如&#xff1a;redis&#xff09;双写数据一致性问题&#xff0c;是一个跟开发语言无关的公共问题。尤其在高并发的场景下&#xff0c;这个问题变得更加严重。 问题描述&#xff1a; 1.在高并发的场景中&#xff0c;针对同一个…

VC++建立空文档失败的一种情形

假设现在要在单文档程序的客户区创建控件; 把控件作为视类的成员变量; 先把成员变量定义加到视类头文件; 然后在视类的, BOOL CMyttView::PreCreateWindow(CREATESTRUCT& cs) {....... } 在此成员函数中创建控件; 运行程序,就会出现如下错误, 这就需要在类向导…

《捕鱼_ue4-5输出带技能的透明通道素材到AE步骤》

《捕鱼_ue4-5输出带技能的透明通道素材到AE步骤》 2022-05-17 11:06 先看下带透明的特效素材效果1、首先在项目设置里搜索alpha&#xff0c;在后期处理标签设置最后一项allow through tonemapper2、在插件管理器中&#xff0c;搜索movie render &#xff0c;加载movie render q…

《QT实用小工具·十一》Echart图表JS交互之仪表盘

1、概述 源码放在文章末尾 该项目为Echart图表JS交互之炫酷的仪表盘&#xff0c;可以用鼠标实时改变仪表盘的读数。 下面为demo演示&#xff1a; 该项目部分代码如下&#xff1a; #include "widget.h" #include "ui_widget.h" #include "qurl.h&q…

UE小:UE5.3无法创建C++工程

当您在使用Unreal Engine (UE) 构建项目时&#xff0c;如果遇到以下问题&#xff1a; Running C:/Program Files/Epic Games/UE\_5.3/Engine/Build/BatchFiles/Build.bat -projectfiles -project"C:/UEProject/Shp\_1/Shp\_1.uproject" -game -rocket -progress Usi…

Vuex的模块化管理

1&#xff1a;定义一个单独的模块。由于mutation的第二个参数只能提交一个对象&#xff0c;所以这里的ThisLog是个json串。 2&#xff1a;在Vuex中的Store.js中引入该模块 3&#xff1a;在别的组件中通过...mapState调用模块保存的State的值。 4&#xff1a;用...mapMutations修…

界面控件Kendo UI for jQuery 2024 Q1亮点 - 新的ToggleButton组件

Telerik & Kendo UI 2024 Q1 版本于2024年初发布&#xff0c;在此版本中将AI集成到了UI组件中&#xff0c;在整个产品组合中引入AI Prompt组件以及10多个新的UI控件、支持Angular 17、多个数据可视化功能增强等。 P.S&#xff1a;Kendo UI for jQuery提供了在短时间内构建…

递归算法解读

递归&#xff08;Recursion&#xff09;是计算机科学中的一个重要概念&#xff0c;它指的是一个函数&#xff08;或过程&#xff09;在其定义中直接或间接地调用自身。递归函数通过把问题分解为更小的相似子问题来解决原问题&#xff0c;这些更小的子问题也使用相同的解决方案&…

文字超出收起展开功能的实现(vue2)

1.编写展开收起组件 <template><div class"text-clamp"><div class"text" :style"{height}"><span v-if"isVisible" class"btn" click"toggle">{{isExpand ? 收起 : ... 展开}}</spa…